• 제목/요약/키워드: SiC-Si composite

검색결과 809건 처리시간 0.032초

금속기 복합재료의 틱소포밍 특성 ($SiC_p/AZ91HP$ Mg 복합재료의 상분석을 중심으로) (Thixoforming Characteristics of Metal Matrix Composites (Phase identification of $SiC_p/AZ91HP$ Mg composite))

  • 이정일;김영직
    • Applied Microscopy
    • /
    • 제29권3호
    • /
    • pp.281-289
    • /
    • 1999
  • 교반관법으로 제조한 $AZ91HP/SiC_p$ Mg 복합재료를 틱소포팅하여 미세조직과 존재상들을 조사하였다. $AZ91HP/SiC_p$ Mg 복합재료를 반응고 가공시 액상율 50% 이상에서 완전 충전이 이루어겼으며 전형적인 반응고 조직을 보였다. 복합재료내의 강화상이 초정 $\alpha$상의 합체, 조대화를 억제하여 보다 용이하게 thixotropic 조직을 가질 수 있었다. TEM 관찰결과, 복합재료내의 계면반응 생성물은 MgO, $Mg_2Si$$Al_{12}Mg_{17}$등이며, 직접 가압시 정출상으로 나타나는 비평형상인 decagonal T상이 관찰되었으며, 이 상은 간접가압시 안정상인 $Al_6Mn$의 형태로 관찰되었다. 이는 간접가압시 승온시간이 직접가압보다 상대적으로 길어, 비평형의 decagonal T상이 안정한 $Al_6Mn$상으로 생성된 것으로 판단된다. 아직까지 생성과정이 명확하진 않으나 교반관법으로 제조 후, 2차가압 성형시 비평형상의 존재는 재료의 강화에 기여할 것으로 판단된다.

  • PDF

표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성 (A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites)

  • 박수진;오진석
    • 접착 및 계면
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2005
  • 본 실험에서는 화학적 표면처리된 탄화규소의 첨가가 탄화규소(SiC)/에폭시 복합재료의 critical strain energy release rate mode II ($G_{IIC}$) 특성에 미치는 영향에 대하여 알아보았으며, 표면처리된 SiC의 표면특성은 산 염기도와 FT-IR을 사용하여 알아보았다. 또한 복합재료의 기계적 계면물성은 $G_{IIC}$를 통하여 알아보았다. 실험결과, 산성 용액으로 표면처리한 SiC (A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC (V-SiC)보다 높으며, $G_{IIC}$의 크랙저항 특성은 A-SiC가 향상되었는데, 이러한 결과는 SiC 충전재와 에폭시 수지간의 분자간 계면결합력의 향상 때문으로 판단된다.

  • PDF

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

반응 가압 소결 방법으로 합성된 nano laminating $Ti_3SiC_2$의 기계적 특성 (Mechanical Properties of Synthesized Nano Laminating $Ti_3SiC_2$ by Reaction Press Sintering)

  • 황성식;박상환;김찬묵
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.396-400
    • /
    • 2003
  • A new synthesis process for nano laminating Ti$_3$SiC$_2$ has been developed using TiCx (x=0.67) and Si powder as starting materials by a reaction hot pressing. Bulk Ti$_3$SiC$_2$ was fabricated using a green body consisting of TiCx and Si by a hot pressing under the pressures of 25 MPa at 1420-1550 $^{\circ}C$ for 90 min. The synthesized Ti$_3$SiC$_2$ was consisting of only TiCx and Ti$_3$SiC$_2$. The relative density of sintered bulk Ti$_3$SiC$_2$ was increased as the hot pressing temperature was increased, which was mainly due to the increase in TiCx contents in synthesized Ti$_3$SiC$_2$. The synthesized Ti$_3$SiC$_2$ bulk was consisted of nano sized lamella structure of 20-100 nm in thickness. It was found that TiCx particles in Ti$_3$SiC$_2$ would increase the 3-point bending strength of synthesized Ti$_3$SiC$_2$ bulk. The maximum 3-P. bending strength of synthesized Ti$_3$SiC$_2$ bulk was more than 800 MPa. The Vickers hardness of synthesized Ti$_3$SiC$_2$bulk was as low as 5 Gpa, which was decreased with the indentation load. The quasi-plastic deformation behaviors were observed around indentation mark on Ti$_3$SiC$_2$.

  • PDF

SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석 (Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation)

  • 노선호;이동희;박광헌
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.

Synthesis and Characterization of Hollow Silicon-Carbon Composites as a Lithium Battery Anode Material

  • Han, Won-Kyu;Ko, Yong-Nam;Yoon, Chong-Seung;Choa, Yong-Ho;Oh, Sung-Tag;Kang, Sung-Goon
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.517-521
    • /
    • 2009
  • Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 $^{\circ}C$ under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 $^{\circ}C$ has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of $\sim$500 mAhg$^{-1}$ and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of $\sim$540 mAhg$^{-1}$ with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.

고온가압소결한 SiC-TiC 복합체의 기계적, 전기적 특성 (Mechanical and Electrical Properties of Hot-Pressed Silicon Carbide-Titanium Carbide Composites)

  • 박용갑
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1194-1202
    • /
    • 1995
  • The influences of TiC additions to the α-SiC on microstructural, mechanical, and electrical properties were investigated. Electrical discharge machinability of SiC-TiC composites was also studied. Samples were prepared by adding 30, 45, 60 wt.% TiC particles as a second phase to a SiC matrix. Sintering of SiC-TiC composites was done by hot pressing under a vacuum atmospehre from 1000 to 2000℃ with a pressure of 32 MPa and held for 90 minutes at 2000℃. Samples obtained by hot pressing were fully dense with the relative densities over 99% except 60wt.% TiC samples. Flexural strength and fracture toughness of the samples were increased with the TiC content. In case of SiC samples containing 45 wt.% TiC, the fracture toughness showed 90% increase compared to that of monolithic SiC sample. The crack propagation and crack deflection were observed with a SEM for etched samples after Vicker's indentation. The electrical resistivities of SiC-TiC composites were measured utilizing the four-point probe. The electrical dischage machining of composites was also conducted to evaluate the machinability.

  • PDF

경량 마그네슘 합금의 표면 신뢰성 향상을 위한 마찰교반공정의 적용 (Application of Friction Stir Process to Improve Surface Reliability of Light Weight Magnesium Alloy)

  • 길응찬;김재연;현창용
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.155-161
    • /
    • 2016
  • Purpose: Purpose of this study is to analyze the effect of particle size as well as number of pass on surface microstructure and hardness of SiC(p)/AZ31 surface composite fabricated by friction stir process (FSP). Method: SiC(p)/AZ31 surface composite containing different size of SiC particle (i. e., $2{\mu}m$ and $8{\mu}m$) was fabricated by multi-pass FSP. Microstructure was observed by scanning electron microscope and surface hardness was determined by Vickers hardness tester. Results: For all the FSPed specimens with and without hardening particles, grain size was refined due to dynamic recrystallization behavior. Surface hardness was observed to increase with decreasing particle size in the composite layer. Increasing number of FSP pass was effective for homogeneous distribution of the hardening particles and for resulting increase in surface hardness. Conclusion: FSP was effective to modify surface microstructure for improving surface hardness of SiC/AZ31 composite.