• 제목/요약/키워드: SiC-Si composite

검색결과 806건 처리시간 0.02초

SiC와 TiO2 첨가에 따르는 ZrO2의 기계적 특성 및 균열 치유 (Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO2) Composite Ceramics with SiC and TiO2)

  • 남기우
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.267-273
    • /
    • 2016
  • 본 연구에서는 부분 안정화 지르코니아(Z)와 자기치유능력을 부여하기 위하여 SiC와 $TiO_2$를 첨가한 5종류의 복합 지르코니아(ZS, ZST1, ZST2, ZST3, ZST5)를 소결하여, 기계적 특성과 열처리에 의한 균열 치유 가능성을 평가하였다. 6종류 지르코니아 세라믹스의 비커스 경도는 큰 차이가 없으며, 부분 안정화 지르코니아에 SiC 첨가(ZS)는 급격한 굽힘강도의 저하가 나타났지만, $TiO_2$의 첨가(ZST1, ZST2, ZST3, ZST5)는 강도가 향상하였다. 이는 SiC 및 $TiO_2$의 첨가의 따른 결정화의 영향이라 판단된다. 최고 굽힘 강도를 나타내는 균열 치유 조건에서 지르코니아 단상체는 비커스 균열이 남았으나, SiC가 첨가된 4종류는 비커스 균열이 관찰되지 않아 균열이 치유되었다.

용탕단조법에 의한 AC4A/SiCw 복합재료 제조에 관한 연구(III) - 기계적 특성 - (Fabrication of AC4A/SiCw composite by squeeze casting (III) - Mechanical characteristics -)

  • 문경철;이준희;윤의박
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.160-168
    • /
    • 1994
  • This was studied about mechanical characteristic of AC4A/SiCw 10-30% reinforced composites. Tensile strength of pressed base metal(base metal) with SiCw preform was higher than without pressed base metal(AC4A). If SiCw whisker volume fraction was increased, tensile strength at room temperature was increased. And tensile strength of SiCw 30% was about $35kg/mm^2$. Tensile strength of SiCw 30 % $400^{\circ}C$ at same time aging was the most excellence, about $40kg/mm^2$. The fracture energy value of composite material at three point bending test was higher than AC4A. Dislocation at matrix of composite material was evenly distributed. But dislocation around whisker of composite material was more existed than matrix. The reasom was thought of pile-up around whisker.

  • PDF

탄화붕소-탄화규소 복합체의 미세구조와 기계적 특성 (Microstructure and mechanical properties of B4C-SiC composites)

  • 소성민;김경훈;박주석;김민숙;김형순
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.338-344
    • /
    • 2019
  • B4C-SiC 복합체를 소결 첨가제 없이 일축가압소결법을 통해 제조하였으며 소결체의 결정상, 상대밀도, 미세구조 및 기계적 특성을 평가하였다. 제조된 B4C-SiC 복합체에서 B4C와 SiC는 균일하게 분산되어 결정립 성장을 억제하고 세밀하고 균일한 미세구조를 형성하였으며 이를 통해 B4C-SiC 복합체의 기계적 특성을 향상시킬 수 있었다. 소결온도 2,000℃, 40 MPa 압력 조건에서 소결된 B4C-SiC 복합체의 상대밀도는 99.8 % 이상이었으며, B4C 50 wt% 조성 복합체의 꺾임 강도와 비커스 경도는 각각 약 625 MPa과 30 GPa로 측정되었다.

고온에서 탄소/탄소 복합재료의 산화억제제의 영향 (The Effects of Inhibitors Impregnated in C/C Composite at High Temperature)

  • 최창구;이원종;박종욱
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.478-482
    • /
    • 1991
  • Numerous researchers have observed the bubble formation from C/C composite at high temperature (1300$^{\circ}C$∼1700$^{\circ}C$). According to thermodynamic calculation, the bubble can be formed at the temperatures above 1500$^{\circ}C$ in the case of SiC coated C/C composite. However, the bubble below 1500$^{\circ}C$ could not be explained. Therfore, in an effort to explain the low temperature bubble formation, the effects of inhibitors such as B, Al, Zr and Si were thermodynamically investigated along with hydrogen and water vapor impurities resolved in C/C composite and SiC coating layer.

  • PDF

Thermostability of Monolithic and Reinforced Al-Fe-V-Si Materials

  • He, Yiqiang;Qiao, Bin;Wang, Na;Yang, Jianming;Xu, Zhengkun;Chen, Zhenhua;Chen, Zhigang
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.339-350
    • /
    • 2009
  • Al-Fe-V-Si alloys reinforced with SiC particles were prepared by multi-layer spray deposition technique. Both microstructures and mechanical properties including hardness and tensile properties development during hot exposure process of Al-8.5Fe-1.3V-1.7Si, Al-8.5Fe-1.3V-1.7Si/15 vol% $SiC_P$ and Al-10.0Fe-1.3V-2Si/15 vol% $SiC_P$ were investigated. The experimental results showed that an amorphous interface of about 3 nm in thickness formed between SiC particles and the matrix. SiC particles injected silicon into the matrix; thus an elevated silicon concentration was found around $\alpha-Al_{12}(Fe,\;V)_3Si$ dispersoids, which subsequently inhibited the coarsening and decomposition of $\alpha-Al_{12}(Fe,\;V)_3Si$ dispersoids and enhanced the thermostability of the alloy matrix. Moreover, the thermostability of microstructure and mechanical properties of Al-10.0Fe-1.3V-2Si/15 vol% $SiC_P$ are of higher quality than those of Al-8.5Fe-1.3V-1.7Si/15 vol% $SiC_P$.

Microwave-Assisted Heating of Electrospun SiC Fiber Mats

  • Khishigbayar, Khos-Erdene;Joo, Young Jun;Cho, Kwang Youn
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.499-505
    • /
    • 2017
  • Flexible silicon carbide fibrous mats were fabricated by a combination of electrospinning and a polymer-derived ceramics route. Polycarbosilane was used as a solute with various solvent mixtures, such as toluene and dimethylformamide. The electrospun PCS fibrous mats were cured under a halogen vapor atmosphere and heat treated at $1300^{\circ}C$. The structure, fiber morphology, thermal behavior, and crystallization of the fabricated SiC fibrous mats were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal imaging. The prepared SiC fibrous mats were composed of randomly distributed fibers approximately $3{\mu}m$ in diameter. The heat radiation of the SiC fiber mats reached $1600^{\circ}C$ under microwave radiation at a frequency of 2.45 GHz.

$SiC/Si_3N_4$ 나노 복합체의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of $SiC/Si_3N_4$ Nano Composite Materials)

  • 강종봉;조범래;이수영
    • 한국재료학회지
    • /
    • 제6권4호
    • /
    • pp.421-427
    • /
    • 1996
  • 초미립 SiC 분말을 2차상으로 Si3N4에 첨가하여 SiC/Si3N4 나노 복합체를 핫프레스법과 가스압소결고 제조하였다. 2차상으로 첨가한 SiC의 입자 크기가 $\beta$-Si3N4 나노 복합체를 제조할 수 있었다. 사온에서 80$0^{\circ}C$까지는 강도의 100$0^{\circ}C$이상에서는 강도는 급격한 감소를 보였으며 이는 소결조제로 첨가한 AI2O3, Y2O3와 SiO2가 $\beta$-Si3N4의 입계에 유리상을 형성하였기 때문에 해석된다.

  • PDF

무기화합물 첨가에 의한 C/C복합재료의 매트릭스 조직제어 (The Role of Inorganic Compounds Additions on the Matrix Microtexture Control of C/C Composite)

  • 박세민
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1151-1158
    • /
    • 1997
  • Fracture of uni-directional carbon fiber reinforced carbon matrix composite is strongly dependent on the orientation of basal plane in graphite matrix when it is limited within matrix. The orientation of basal planes are vertically stacked to carbon fiber which results in the weakness for applied tensile or shear force in thermosetting resin derived-carbon matrix composite. Microtextural control of the matrix was tried through chemical interaction between metal carbides and furan resin derived-carbon matrix. SiC and TiO2 addition made the orientation disordered. However, porosity increased due to decomposition of SiC. Interfacial bonding could be controlled by TiO2 addition, but carbon fiber was considerably reacted with TiC during thermal treatment higher than 2$600^{\circ}C$. Therefore, it is desirable to control the thermal treatment temperature at which decomposition of SiC was not serious and TiC/C was not formed eutectoid.

  • PDF

Al-Si/SiCp 복합조직에 미치는 Rheo-compocasting의 제조조건 및 Mg첨가의 영향 (Influence of Rheo-compocasting Conditions and Mg Additions on the Microstructures in Al-Si/SiCp Composite)

  • 김석원;이의권;전우용
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.524-531
    • /
    • 1993
  • Dispersion behaviors of SiC particles and microstructures in Al-2%Si/SiCp composite prepared by Rheo-compocasting were studied with change of fabrication conditions(slurry temperature, agitation time) and additions of Mg($0{\sim}3wt.%$). Also, the microhardness change of matrix, interface and total in composites were examined with additions of Mg($0{\sim}3wt.%$). The dispersion of particles in the composites became relatively homogeneous with increase of Mg additions, agitation time and decrease of slurry temperature. Rate of occupied area by particle in matrix was increased as increase of Mg additions due to improvement of wettability between SiC particle and matrix. A favorable composites were obtained by melting under Ar atmospheric SiCp injection and bottom pouring system. According to the analysis of X-ray diffraction, $Mg_2Si$, $Al_4C_3$, $SiO_2$ and MgO, etc, intermetallic compounds were formed by chemical interreaction at interface of matrix and particles. The microhardness of interface is higher than that of matrix due to more strengthening of above intermetallic compounds. It was considered that the total hardness of the composites is improved by dispersing of SiCp and addition of Mg.

  • PDF