• 제목/요약/키워드: SiC-Si composite

Search Result 806, Processing Time 0.031 seconds

Study on the R-curve Behaviour in $Al_2O_3-ZrO_2-SiC$ Whisker Comosite ($Al_2O_3-ZrO_2-SiC$ Whisker 복합재료에서의 R-curve 거동에 관한 연구)

  • Kim, Hyun-Ha;Park, Hyun;Choi,Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.731-739
    • /
    • 1993
  • R-curve measurements were performed on Al2O3(matrix)-ZrO2-SiC whisker composite and Al2O3-ZrO2, Al2O3-SiC whisker composites in the favor of comparing the effect of ZrO2 and SiC whisker, as a second phase, to Al2O3 matrix. Al2O3-SiC whisker and Al2O3-ZrO2-SiC whisker were fabricated by hot pressing at 1$700^{\circ}C$, 15MPa and Al2O3-ZrO2 by pressureless sintering at 1$600^{\circ}C$. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension and R-curve behaviour was determined from the relationship which is KR=K0(Δa)m. R-curveresults were KR=6.173$\times$Δa0.031 for Al2O3-ZrO2, KR=18.796$\times$Δa0.172 for Al2O3-SiC whisker and KR=11.96$\times$Δa0.110 for Al2O3-ZrO2-SiC whisker composite. From the analysis of R-curve and expeirmental data above three composites, it is found that R-curve behaviour of Al2O3-ZrO2-SiC whisker composite was dominated initially by the strengthening effect of ZrO2 and after, some extended crack were influenced by the effect of SiC whisker. Analysis of SEM and X-ray data revealed that whisker bridging in the crack wake and whisker pull-out mechanisms were the main mechanism for the R-curve behaviour.

  • PDF

FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding (핵연료 피복관용 다중층 SiC 복합체 튜브의 Hoop Stress 전산모사 연구)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.435-441
    • /
    • 2014
  • Silicon carbide-based ceramics and their composites have been studied for application to fusion and advanced fission energy systems. For fission reactors, $SiC_f$/SiC composites can be applied to core structural materials. Multilayered SiC composite fuel cladding, owing to its superior high temperature strength and low hydrogen generation under severe accident conditions, is a candidate for the replacement of zirconium alloy cladding. The SiC composite cladding has to retain its mechanical properties and original structure under the inner pressure caused by fission products; as such it can be applied as a cladding in fission reactor. A hoop strength test using an expandable polyurethane plug was designed in order to evaluate the mechanical properties of the fuel cladding. In this paper, a hoop strength test of the multilayered SiC composite tube for nuclear fuel cladding was simulated using FEA. The stress caused by the plug was distributed nonuniformly because of the friction coefficient difference between the inner surface of the tube and the plug. Hoop stress and shear stress at the tube was evaluated and the relationship between the concentrated stress at the inner layer of the tube and the fracture behavior of the tube was investigated.

A study on the wettability of the Al-Li/SiC interface (Al-Li/SiC 계면의 젖음성에 관한 연구)

  • Kim, Ki-Bae;Kim, Do-Hyang;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.12 no.2
    • /
    • pp.149-154
    • /
    • 1992
  • The wetting behaviour of SiC/Al-Li composite interface has been investigated by using an infiltration method. The critical pressure for melt infiltration into SiC particulate preform has been determined by measuring the melt infiltration distance changes with the variation of applied pressure. The threshold pressure of pure Al, Al-0.2wt%Li, Al-0.5wt%Li for melt infiltration are 3.94, 3.93, $3.7Kg/cm^2$ respectively, which implies a slight improvement in wettability of SiC/Al composite by addition of Li. The threshold pressure for melt infiltration also changes with the variation of other parameters such SiC particulate size, SiC particulate fraction and melt temperature.

  • PDF

Fabrication of SiCf/SiC Composite by Chemical Vapor Infiltration (화학기상침착법에 의한 SiCf/SiC 복합체의 제조)

  • Park, Ji Yeon;Kim, Daejong;Kim, Weon-Ju
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2017
  • Among several fabrication processes of $SiC_f/SiC$ composites, the chemical vapor infiltration (CVI) process has attractive advantages in manufacturing complex net-or near-net-shape components at relatively low temperatures, easily controlling the microstructure of the matrix and obtaining the highest SiC purity level. However, it has disadvantages in that the ratio of residual pores in matrix is higher than other processes and processing time is relatively long. To reduce the residual porosity, the whisker-growing-assisted CVI process, which is composed of whisker growth and matrix filling steps has been developed. The whiskers grown before matrix filling may serve to divide the large natural pores between the fibers or bundles so that the matrix can be effectively filled into the finely divided pores. In this paper, the fundamentals of the CVI process for preparation of $SiC_f/SiC$ composites and some experimental results prepared by CVI and whisker-growing-assisted CVI processes are briefly introduced.

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

The Effect of the Ratio of C45 Carbon to Graphene on the Si/C Composite Materials Used as Anode for Lithium-ion Batteries

  • Hoang Anh Nguyen;Thi Nam Pham;Le Thanh Nguyen Huynh;Tran Ha Trang Nguyen;Viet Hai Le;Nguyen Thai Hoang;Thi Thom Nguyen;Thi Thu Trang Nguyen;Dai Lam Tran;Thi Mai Thanh Dinh
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.291-298
    • /
    • 2024
  • Due to its high theoretical capacity, Silicon (Si) has shown great potential as an anode material for lithium-ion batteries (LIBs). However, the large volume change of Si during cycling leads to poor cycling stability and low Coulombic efficiency. In this study, we synthesized Si/Carbon C45:Graphene composites using a ball-milling method with a fixed Si content (20%) and investigated the influence of the C45/Gr ratio on the electrochemical performance of the composites. The results showed that carbon C45 networks can provide good conductivity, but tend to break at Si locations, resulting in poor conductivity. However, the addition of graphene helps to reconnect the broken C45 networks, improving the conductivity of the composite. Moreover, the C45 can also act as a protective coating around Si particles, reducing the volume expansion of Si during charging/discharging cycles. The Si/C45:Gr (70:10 wt%) composite exhibits improved electrochemical performance with high capacity (~1660 mAh g-1 at 0.1 C) and cycling stability (~1370 mAh g-1 after 100 cycles). This work highlights the effective role of carbon C45 and graphene in Si/C composites for enhancing the performance of Si-based anode materials for LIBs.

Initiation and Growth Behavior of Small Surface Fatigue Cracks on SiC Whisker Reinforced Aluminum Composite (SiC 휘스커 강화 알미늄기 복합재료의 미소 표면 피로균열의 발생 및 진전거동)

  • Choe, Yeong-Geun;Lee, Taek-Sun;Kim, Sang-Tae;Seo, Chang-Min;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1584-1592
    • /
    • 2000
  • Reversed plane bending fatigue tests were conducted on SiC whisker reinforced aluminum composite which were consolidated by squeeze casting process. Initiation and growth of small surface fatigue c racks were investigated by means of a plastic replica technique. The fatigue crack initiated in the vicinity of SiC whisker/matrix interface. It was found that a fatigue crack deflected along SiC whisker and grew in a zig-zag manner microscopically, although the crack propagated along the direction normal to the loading axis macroscopically. The coalescence of micro-cracks was observed in the tests conducted at high stress levels, but were not evident in tests in which lower levels of stress were applied. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn -ΔK realtionship.

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive (SiC 첨가한 ZrO2의 기계적 특성에 대한 와이블 통계 해석)

  • Nam, Ki Woo;Kim, Seon Jin;Kim, Dae Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.901-907
    • /
    • 2015
  • The Vickers hardness test is a common method used to characterize the hardness of ceramic materials. However, the hardness is not a deterministic value, but is a random variable. The objective of this paper is to investigate the statistical properties of the bending strength and a set of Vickers hardness values in single $ZrO_2$ and composite $ZrO_2/SiC$ with a SiC additive. In this work, we compare the characteristic value and variation with the results based on Weibull statistical analysis. The probability distributions of the bending strength and Vickers hardness agreed relatively well with the Weibull distribution. We evaluate the scale parameter and shape parameter in asreceived $ZrO_2$ and $ZrO_2/SiC$ composite ceramics, as well as in their heat treated ceramics.

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal;Anil Prasad;Jayangani Ranasinghe;Ericmoore Jossou;Lukas Bichler;Jerzy Szpunar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3725-3731
    • /
    • 2023
  • Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.