• Title/Summary/Keyword: SiC-Si composite

Search Result 802, Processing Time 0.024 seconds

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method (기계적 합금화법에 의한 실리콘계 복합물질의 전지전극특성)

  • Lee, Churl-Kyoung;Lee, Jong-Ho;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.

Effect of Cold Cyclic Compaction on Densification of $Al_2O_3$ Powder/SiC Whisker Composite ($Al_2O_3$분말과 SiC 휘스커 복합체의 치밀화에 미치는 상온 반복 압축의 영향)

  • 최승완;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.296-302
    • /
    • 1997
  • The effect of cold cyclic compaction on densification of SiC whisker/Al2O3 composite was investigated. Re-lative density of the compact increased as the number of cycle and the compaction pressure increased and the bias pressure decreased. The rate of loading and unloading and the frequency of cold cyclic compaction did not affect much on sliding and rearrangement of the particles. Fracture of SiC whisker was hardly ob-served during cold cyclic compaction and the direction of whisker was randomly oriented throughout the compact regardless of the direction of compaction. Thus, cold cyclic compaction may be an efficient method to densify SiC whisker/Al2O3 composite.

  • PDF

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides II. Synthesis of Coated Type $Al_2O_3-SiC$ Composite Powders (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 II. 피복형 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 1993
  • Coated type Al2O3-SiC composite powders were synthesized by surface modification method. Transformation temperature to $\alpha$-Al2O3 of Al2O3 monolith was 115$0^{\circ}C$ whereas increased to 1200, 1250, 130$0^{\circ}C$ with increment of SiC content to 5, 15, 25wt%. Transformation temperature to $\alpha$-Al2O3 was lowered by $\alpha$-Al2O3 seeding. FTIR data analysis and electron micrographs showed that Al2O3 particles were effectively coated on SiC particles.

  • PDF

Fabrication and Properties of $SiC/Si_3N_4$ Hybrid Composite Materials ($SiC/Si_3N_4$ 하이브리드 복합체이 제조 및 특성)

  • Gang, Jong-Bong;Jo, Beom-Rae;Lee, Su-Yeong
    • Korean Journal of Materials Research
    • /
    • v.6 no.4
    • /
    • pp.428-435
    • /
    • 1996
  • 초미립 SiC분말과 SiC platelet을 2차성으로 Si3N4에 첨가하여 SiC/Si3N4 하이브리드 복합체를 가압소결로 제조한 후 2차상의 영향을 조사한 결과핫프레스법을 이용한 경우 SiC platelet은 Si3N4 기지 복합채의 치밀화를 저해하지 않고 초미립의 SiC 첨가는 Si3N4의 입성장을 효과적으로 억제하여 미세한 $\beta$-Si3N4의 grain을 형성함을 관찰하였다. 초미립 SiC첨가를 통한 복합체의 강도 증진은 상대적으로 $\beta$-Si3N4입자의 미세화에 의한 인성의 저하를 유도하나 SiC platelet을 첨가하여 급격한 강도 저하 없이 높은 인성을 갖는 하이브리드 복합체를 제조할 수 있었으며 SiC/Si3N4 하이브리드 복합체의 인성증진은 elongated $\beta$-Si3N4와 platelet SiC의 debonding에 의한 grain pull-out 영향임을 알 수 있었다.

  • PDF

Preparation of Si-SiC Composites by Si-Infiltration (Si 침윤에 의한 Si-SiC 복합체 제조)

  • 김인술;장주민;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.750-756
    • /
    • 1992
  • Reaction bonded si-SiC composites were prepared by silicon infiltration technique at temperature of 1$600^{\circ}C$ for 30 minutes in vaccum atmosphere. The microstructure and mechanical properties of Si-SiC composites were investigated and characterized. UF-15 and SE-10 as SiC powders, phenolic resin and carbon black as carbon source, and metallic silicon powder as molten Si source were used as starting materials. New SiC crystallines nucleatd and grown by reaction of Si and C were detected by TEM and SEM-EDS. The bonding between new and original SiC was found to be strong. But the wetting of SiC by unreacted metallic Si and the rapid grain growth of new SiC decreased density and fracture toughness. Fracture toughness and modulus of rupture of Si-SiC composite were about 3.2 MPa.m1/2 and 480 MPa, respectively.

  • PDF