• Title/Summary/Keyword: SiC size

Search Result 1,130, Processing Time 0.027 seconds

Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics (Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성)

  • Bae, Sang-Jin;Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.197-201
    • /
    • 2013
  • This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Crystallization of Borosilicate Glasses for High-Strength Bulletproof Materials (고강도 방탄소재를 위한 Borosilicate 유리의 결정화)

  • Lee, Hyun-Suk;Shim, Gyu-In;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.358-364
    • /
    • 2013
  • Borosilicate glass(GVB-Solutions in glass, 2mm, Germany) was prepared in the composition of $80.4SiO_2-4.2Na_2O-2.4Al_2O_3-13.0B_2O_3$. The 2-step crystallization was performed around $584^{\circ}C$ of glass transition temperature ($T_g$), and $774^{\circ}C$ of crystallization temperature($T_c$). The maximum nucleation rate was $8.8{\time}10^9/mm^3{\cdot}hr$ at $600^{\circ}C$ and the maximum crystal growth rate was 3.5nm/min at $750^{\circ}C$. The maximum mechanical properties were observed at 22.8% of volume fraction, the strength, hardness and fracture toughness was 555MPa, $752kg/mm^2$, $1.082MPa{\cdot}mm^{1/2}$. The crystal size of 177nm which has volume fraction of 22.8% showed maximum strength of 562MPa, it is about 157% higher than parent borosilicate glass. From these results, the crystallized borosilicate glass can be applied weight lighting of bullet proof materials.

The Effects of the Annealing Heat Treatments and Testing Temperatures on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리와 시험온도의 영향)

  • Won, Si-Tae;Kim, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.167-176
    • /
    • 2001
  • The effects of heat treatments and testing temperatures on the mechanical properties of Invar materials were investigated through experiments, which call influence the formability in metal forming fields. Annealing temperatures were changed from $900^{\circ}C$ to $1200^{\circ}C$ with an increment of $100^{\circ}C$ under two different furnace atmosphere(vacuum and H$_2$gas). Microstructure and hardness tests were performed for annealed specimens at room temperature(RT) and tensile tests were also performed by changing annealing temperatures as well as testing temperatures from RT to $300^{\circ}C$. The grain size of annealed materials increased with increasing annealing temperature, while micro-hardness distributions showed almost same hardness values regardless of annealing temperatures. Strength ratio (tensile/yield strength), which influences the forming characteristics of sheet metal, remained almost constant for various experimental conditions in case of unannealed specimens. However, it showed increasing tendency with increasing both annealing and testing temperatures, particularly at the testing temperature higher than $200^{\circ}C$. Therefore it can be concluded that press formability of fully-annealed Invar material can be improved by warm forming technique.

  • PDF

Low-Temperature Crystallization of Amorphous Si Films by Cu Adsorption (구리 흡착에 의한 비정질 실리콘 박막의 저온 결정화 거동)

  • Jo, Seong-U;Son, Dong-Gyun;Lee, Jae-Sin;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.188-195
    • /
    • 1997
  • Copper ions were adsorbed on amorphous Si films by spincoating of Cu solutions and were employed as surface nucleation sites for low-temperature crystallization. The crystallization temperature can bc lo~vered down to $500^{\circ}C$ and rhe crystallization time can be shortened by Cu adsorption. The Cu-adsorbed amorphous films were crystallized by fractal growth with the shape of tree branches. The fractal size ranged from $30 to 300{\mu}m$, depending on the Cu solution concentration. The fractals consisted of f e a t h e r like elliptical grains with the size of $0.3~0.4{\mu}m$. which was comparable to that of the intrinsic films crystallized at $600^{\circ}C$. Both the nucleation activation energy and grotvth activation energy decreased as the Cu concentration in the solution increased. The results suggest thcit the adsorbed Cu increases preferred nucleation sites at the surface and enhmces crystallization by reducing thc activation energies of nucleation and growth.

  • PDF

Synthesis and characterizations of the non-swelling property micas by hydrothermal method (비팽윤성 운모의 수열합성 및 특성평가)

  • Park, Chun-Won;Park, Sun-Min;Kambayashi, Akira
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2006
  • Synthesis of the non-swelling property micas was carried out by hydrothermal method. In order to artificially induce the diffusion of ions, a rotating system was attached to the hydrothermal apparatus and by adding 0.7 mm zircon beads, synthesis of the non-swelling property micas could be performed in a low temperature area. The hydrothermal conditions for the preparation of micas were a reaction temperature of $260^{\circ}C$, for 72 hrs, using $1K_2O,\;1Al(OH)_3,\;4Mg(OH)_2\;and\;6SiO_2$ as the starting materials and a 8M-KOH solution as the hydrothermal solvent. The micas obtained under these conditions were a plate shape with a size of $2.89{\mu}m$ and showed a whiteness of over 97 %. Also, through the FT-IR analysis, because the absorption peak of the $Mg_3OH$ vibration was observed at approximately $3700cm^{-1}$, it could be known that it was phlogopite of non-swelling property showing the chemical composition of $KMg_3AlSi_3O_{10}(OH)_2$. This result was very consistent with the EDS analysis where O (41.34 %), Mg (3.88 %), Al (11.45 %), Si (17.62 %) and K (25.71%) elements were detected.

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor (회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.901-908
    • /
    • 2018
  • Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Effect of Potassium Silicate on Growth and Leaf Epidermal Characteristics of Begonia and Pansy Grown in Vitro

  • Lim, Mi Young;Lee, Eun Ju;Jana, Sonali;Sivanesan, Iyyakkannu;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.579-585
    • /
    • 2012
  • This study was carried out to investigate the effect of potassium silicate on the growth and leaf epidermal characteristics of horticultural crops viz., begonia (Begonia semperflorens Link et Otto) 'Super Olympia Red' and 'Super Olympia Rose' and pansy (Viola ${\times}$ wittrockiana Hort.) 'Matrix White Blotch' and 'Matrix Yellow Blotch' in vitro. Seeds after germination were grown on a quarter strength MS medium supplemented with potassium silicate ($K_2SiO_3$) at 0, 100, 200, or $300mg{\cdot}L^{-1}$ and were maintained under a photoperiod of 16 hours at $25^{\circ}C$. Growth parameters such as plant height, root length, chlorophyll content, fresh, and dry weights have been recorded after a growth period of 58 days for begonia and 94 days for pansy. In begonia, fresh weight was significantly greatest in the $200mg{\cdot}L^{-1}$ $K_2SiO_3$ treatment in both 'Super Olympia Red' and 'Super Olympia Rose'. In both pansy cultivars, fresh weight was the greatest in the $200mg{\cdot}L^{-1}$ $K_2SiO_3$ treatment than other treatments. Chlorophyll content was significantly greater in the $100mg{\cdot}L^{-1}$ $K_2SiO_3$ treatment for both the cultivars of begonia. Leaf area significantly increased with the higher concentrations of $K_2SiO_3$ treatment in both cultivars of pansy. Stomatal structures on the leaf epidermis were observed with scanning electron microscopy (SEM). In begonia 'Super Olympia Rose', the structure of stomata were more compact in size in the $300mg{\cdot}L^{-1}$ $K_2SiO_3$ treatment than in the control. Similarly, in pansy 'Matrix White Blotch' the surface of stomata appeared to be smoother in the $300mg{\cdot}L^{-1}$ $K_2SiO_3$ treatment than those wrinkled appearance in the control. The surface of the leaf epidermis appeared to be compact due to Si deposition, and thus results indicated that Si positively affected the growth and biomass production of these species. Our data show that the effect of Si on growth parameters is strongly dependent on cultivar of the plant species tested.

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies (용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구)

  • Lee, Deuk-Yong;Jang, Joo-Wung;Lee, Myung-Hyun;Lee, Jun-Kwang;Kim, Dae-Joon;Park, Il-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • Four commercial alumina powders having different particle size of $0.5{\mu}m,\;2.8{\mu}m,\;12{\mu}m,\;and\;45{\mu}m$ were presintered at 1120$^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}C$ for 2h in the interval of 0.1h to investigate the penetration kinetic of the glass into the alumina preforms. The infiltration distance is parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, increases with raising the alumina particle size. The strength of glass-alumina composites increases as the alumina particle size reaches to 2.8${\mu}m$ due to the increase in packing, however, decreases with further increasing the alumina particle size. The fracture toughness of the composites rises with increasing the alumina particle size due to the crack bowing and the interaction between crack and alumina particles.