• 제목/요약/키워드: SiC content

검색결과 800건 처리시간 0.027초

분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희;이충효
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

6H-SiC로부터 제작한 SiC 세라믹스의 열전변환 특성 (Thermoelectric Conversion Characteristics of SiC Ceramics Fabricated from 6H-SiC Powder)

  • 배철훈
    • 한국세라믹학회지
    • /
    • 제27권3호
    • /
    • pp.412-422
    • /
    • 1990
  • Porous SiC ceramics were proposed to be promising materials for high-temperature thermoelectric energy conversion. Throughthe thermoelectric property measurements and microstructure observations on the porous alpha SiC and the mixture of $\alpha$-and $\beta$-SiC, it was experimentally clarified that elimination of stacking faults and twin boundaries by grain growth is effective to increase the seebeck coefficient and increasing content of $\alpha$-SiC gives rise to lower electrical conductivity. Furthermore, the effects of additives on the thermoelectric properties of 6H-SiC ceramics were also studied. The electrical conductivity and the seebeck coefficient were measured at 35$0^{\circ}C$ to 105$0^{\circ}C$ in argon atmospehre. The thermoelectric conversion efficiency of $\alpha$-SiC ceramics was lower than that of $\beta$-SiC ceramics. The phase homogeneity would be needed to improve the seebeck coefficient and electrical conductivity decreased with increasing the content of $\alpha$-phase. In the case of B addition, XRD analysis showed that the phase transformation did not occur during sintering. On the other hand, AlN addiiton enhanced the reverse phase transformation from 6H-SiC to 4H-SiC, and this phenomenon had a great effect upon the electrical conductivity.

  • PDF

SiOC 박막의 접촉각과 화학적 특성의 상관성 (Chemical Properteis and Contact Angle on SiOC)

  • 오데레사;김홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.205-205
    • /
    • 2007
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the I-V measurement and FTIR spectra. The main bond of 950~1200 cm-1 was composed of the Si-C, Si-O-C and Si-O bonds. The leakage current of the SiOC film increased with the increasing of the carbon content, and the drift of the current was similar to the Si-O-C bond content.

  • PDF

반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구 (A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size)

  • 김영주;박영식;정연웅;송준백;박소영;임항준
    • Composites Research
    • /
    • 제25권6호
    • /
    • pp.172-177
    • /
    • 2012
  • 저저항 Si-SiC 소결체 제조를 위해 ${\alpha}$-SiC에서 조성과 C의 양을 변화시키면서 반응소결 특성을 고찰하였다. 시료준비는 정수압으로 성형체를 제조하였고, 용융Si 반응소결을 통해 시험편을 준비하였다. 반응소결체의 미세구조, 기계적 특성 및 전기저항 분석 결과 용융Si과 반응 후 미립의 ${\beta}$-SiC가 생성되었고, 치밀한 소결체를 형성하였다. 미립 ${\beta}$-SiC 생성량은 카본 양 에 따라 증가하였다. 그리고 C함량 10wt%이내에서 기계 R전기저항특성은 입도조성 영향이 크고 카본 함량 10wt%이상에서는 상전이 반응의 영향이 큼을 알 수 있었다.

Al-SiCp복합재료에서 SiCp의 용해거동에 관한 연구 (A Study on Dissolution Behaviors of SiCp in Al-SiCp Composite)

  • 김석원;이의권;전우용
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.350-358
    • /
    • 1993
  • Aluminum base composites reinforced with various amount of SiC particles and Mg contents have been investigated by different fabrication method for twenty-years. In this paper, how the decomposition and dissolution behaviors of $SiCp(20{\mu}m)$ in the melt of Al composites arised was studied. As the results, the decomposition and dissolution of SiCp into the melt of Al composites increased with increase of the temperature above $720^{\circ}C$, and holding time at a given melting temperature. Because SiC is thermodynamically unstable in this Al-SiCp composite at temperature above the liquidus, SiCp dissolves and reacts with Al in matrix to form $Al_4C_3$ according to following chemical equation $4Al+3SiC{\rightarrow}Al_4C_3+3Si$, Si decomposed and dissolved from SiCp increases Si content of matrix, while liquidus temperature of matrix decrease with increase of SiC content in matrix. The hardness of SiCp decreased with increase of the melting temperature, the hardness of the matrix /particle interface increased with increase of the melting temperature due to increase of the $Mg_2Si$ and $Al_4C_3$ intermetallic compounds, etc.

  • PDF

용탕인출법으로 제조한 퍼말로이 박판의 Si 함량이 미세조직 및 자성특성에 미치는 영향 (Effect of Si Addition on Microstructure and Magnetic Properties of Permalloy Fabricated by Melt Drag Casting)

  • 임경묵;강주석;박찬경;남궁정;김문철
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.522-527
    • /
    • 2004
  • Permalloys were successfully fabricated by melt drag casting in the present study, and their microstructure and consequent magnetic properties have been investigated as a function of Si content. In order to understand the relationship between magnetic properties and Si content, microstructure and texture were observed and phase analysis were performed by TEM. The effective permeability went through a maximum value at $2\%$ Si and then decreased with increasing Si content. Increasing Si content enlarged grain size, which resulted in improvement of permeability. However, over-added Si caused the formation of $Ni_3Fe$ order phase so that $5\%$ Si added permalloys had the smallest permeability.

아공정(亞共晶)Cr 주철(鑄鐵)의 기지조직(基地組織)에 미치는 Si의 영향(影響) (Study on the effect of silicon content on matrix of hypo-eutectic Cr alloyed cast iron)

  • 김석원;이오연;김동건
    • 한국주조공학회지
    • /
    • 제4권2호
    • /
    • pp.96-101
    • /
    • 1984
  • The morphologies of eutectic cell formed during solidification affect on the mechanical properties in high Cr cast iron. In order to investigate the influence of Si on the structure, five kinds of specimen containing 16.42% Cr with varying amount of Si (0.51%, 1.17%, 2.22%, 2.71%, 3.56%) were poured into shell mould preheated $330^{\circ}C$ at $1510^{\circ}C$. The effect of Si on matrix in hypo-eutctic Cr cast iron (2.48% C, 16.42%) were studied through its mechanical tests and observation of microstructure using of metallurgical microscope, EPMA, SEM and Image analyzer systematically. The results obtained from the above studies are as follows: 1. Because of ${\Delta}T$ decreasing with increasing Si content, the morpologies of colony change into uniform bar-type carbide from plate-type ones, moreover eutectic colony size (Ew) becomes narrow and spacing of carbide wider. 2. As Si content increases, the amount of carbides also increases and most of Cr were dissolved in carbides while Si in matrix. 3. The hardness, tensile strength and wear resistance were increasing while impact value decreased with increasing Si content. 4. In fracture section, small amount of dimple pattern was observed in less than 1.17% Si but more than 2.22% Si river pattern was presented.

  • PDF

Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화 (Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development)

  • 조경식;이현권;이상우
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구 (Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders)

  • 장광주;김경태;양상선;김용진;박용호
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구 (Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber)

  • 송종섭;김세영;백경호;우상국;김수현
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.77-83
    • /
    • 2017
  • 섬유강화 세라믹 복합재료 제조 방법 중 실리콘 용융 침투 공정법(Liquid Silicon Infiltration-LSI)은 낮은 제조단가 및 짧은 공정 시간 등의 장점을 가진다. 본 연구에서는 고온 내산 특성이 우수한 SiC 섬유를 LSI 공정에 적용하기 위해 결정화도와 산소함량이 다른 세 가지 SiC 섬유(Tyranno SA, LoxM, Tyranno S)를 이용하여 $SiC_f/SiC$ 복합재료를 제작하고 그 적용 가능성을 확인하였다. LSI 공정을 통해 제조된 $SiC_f/SiC$ 복합재료는 모두 2% 미만의 기공률로 치밀화 되었지만, 섬유의 결정화도와 산소함량에 따라 3점 굽힘강도는 큰 차이를 나타냈다. 이는 $1450^{\circ}C$ 이상의 높은 LSI 공정 온도에 SiC 섬유가 노출 될 경우 비정질 SiOC상이 결정화되며 수축하는 현상과 섬유 내 잔존 산소-모재 내 탄소의 반응으로 인한 미세구조 차이에 기인하는 것으로 판단된다. 이는 SEM, XRD 및 TEM 분석을 통해 섬유 종류별 공정온도에서의 특성 변화로 확인하였다.