• Title/Summary/Keyword: SiC coating

Search Result 562, Processing Time 0.028 seconds

Gas Permaeation Characteristics of Ceramic Membranes by the Pressurized Sol-Gel Coating Techique (가압 졸-겔 코팅법에 의한 세라믹막의 기체투과 특성)

  • 현상훈;강범석
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.35-35
    • /
    • 1993
  • 튜브형 $\alpha-Al_2O_3$ 담체에 졸-겔 침지코팅법과 가압코팅(pressurized coating) 법으로 boehmite 졸과 극미세 입자 SiO$_2$ 및 TiO$_2$ 졸을 코팅한 후 200$\circ$C~500$\circ$C 에서 열처리하여 복합분리막을 제조하였다.

  • PDF

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Wear Resistance Characteristics of Thermal Sprayed AlSiMg/SiC Composite Coatings on Aluminum Engine Cylinder Bores (Aluminum Engine Cylinder Bore 적용 AlSiMg/SiC 복합 용사피막의 내마모 특성)

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.62-69
    • /
    • 1999
  • The advantages of Thermal sprayed coatings as a replacement for cast iron liners are reduced weight, better heat transfer and reduced cost. One of the most important performance attributes of a cylinder bore coating is its wear resistance, since it must survive the abrasive sliding of both the piston rings and the piston skirt. In this study, composite powders were prepared by ball milling of Al-13Si-3Mg(wt%) alloy with SiC particles. The concentrations of SiC were 40 and 60wt%. The composite powders were sprayed using Metco-9MB plasma torch. Plasma sprayed coatings were heat-treated at 500℃ for 3 hours. The wear resistances of the plasma sprayed coatings were found to improve with heat treatment and superior to the commercially available G.C.I.(gray cast iron). AlSiMg-40SiC heat-treated coatings showed the best wear resistance in this study.

  • PDF

Effects of Coating Materials on Fluidity and Temperature Loss of Molten Metals from Runner Systems in Full Moulds.

  • Cho, Nam-Don;Kim, Yong-Hyun;Choi, Jung-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The full mould casting process in one of the newly developed techniques which has many advantages. Unbonded sand mould has been prepared for the major mould and $CO^2$ gas mould has been used occasionally for comparison. Patterns were built up with expanded polystyrene and coated with three different materials. Silica, graphite and zircon were used for the coating layer. The effects on fluidity and temperature loss of molten metals were investigated. The molten metals were Al-5% Si alloy, Cu-30% Zn alloy and gray iron of approximately 4.0% of carbon equivalent. Experimental variables were runner section area, superheat, sprue height, coating materials, coating thickness and apparent density of EPS pattern. The effects of coating materials on fluidity and temperature loss of the molten metals during transient pouring are summarized as follows : As runner section area, superheat and sprue height increased, fluidity increased. Temperature loss decreased as runner section area and sprue height increased. However, reversed effects were observed in the case of superheat increment. The coating materials decreased the fluidity of each alloy in the order of silica, graphite and zircon. Zircon brought to the highest temperature loss among the coating materials used. The fluidity increased in the order gray iron, Cu-30% Zn and Al-5% Si alloy while temperature loss in the reverse order. Especially in case of reduced pressure process, the fluidity was increased apparently. Al-5% Si alloy showed the lowest temperature loss among the alloys. The increment of the apparent density of EPS pattern resulted in the fluidity decrease and temperature loss increase. The relation between fluidity and temperature loss of each alloy can be expressed by the following equation within the coating thickness limit of 0.5-1.5㎜. F^*={\frac{a}{T^*-b}}-c$ where, $F^*$ : fluidity in the Full mould, $T^*$ : temperature loss in the mould. a : parameter for full mould. b, c : constants.

  • PDF

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating (고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향)

  • Kim, Jeong-Min;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2019
  • Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite (탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용)

  • Kim, Hyun-Mi;Choi, Sung-Churl;Cho, Nam Choon;Lee, Hyung Ik;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.283-293
    • /
    • 2019
  • As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.

The Effects of SiO2 Addition and Cooling Rate Change by Sol-gel Processing in Semiconducting BaTiO3 Ceramics (반도성 $BaTiO_3$ 세라믹스의 Sol-gel법에 의한 $SiO_2$ 첨가 및 냉각속도 효과)

  • 권오성;정용선;윤영호;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1301-1310
    • /
    • 1996
  • Generally it requires high sintering temperatures more than 135$0^{\circ}C$ to make semiconductive BaTiO3 ceramics. Also it is very difficult to achieve a homogeneous mixing in solid-state reaction method. Therefore the liquid phase distributed to non-uniform dilute the characteristics of PTCR. In order to improve the uniformity this study is used the sol-gel coating method. Using this method we studied the new manufacturing process that had a high reproducibility and mass production capability. Tetraethyl orthosilicate (TEOS) was used as a source of Si. The semiconductive BaTiO3 ceramics which was produced by sol-gel method for the SiO2 addition and sintered between 124$0^{\circ}C$ and 130$0^{\circ}C$ showed almost same resistivity at room temperature among 125$0^{\circ}C$ and 130$0^{\circ}C$. As the results We could be sintered the semiconducting BaTiO3 ceramics at lower temperature even at 125$0^{\circ}C$ maintaining the same specific resistivity ratio ($\rho$max/$\rho$min) at 130$0^{\circ}C$. The specific resistivity both below and above the Curie temperature were increased by slow cooling and the steepness of the plots in the reasion of transition from low to high resistance increased as the cooling rate decreased.

  • PDF

Evaluation of Mechanical Characteristic of Laser-Welded Blank of a Boron Steel by Using Laser Ablation of Al-Si Coating Layer (Al-Si 코팅층 Laser Ablation 변수에 의한 LWB 보론강판의 기계적 특성 평가)

  • Moon, J.H.;Lee, M.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.540-547
    • /
    • 2011
  • Recent years have seen advent of hot stamped parts made from laser-welded blanks of boron steels for structures requiring high crash energy absorption. However, the presence of Al-Si coating interfered with satisfactory mechanical characterizations after laser butt welding. In this study, laser ablation technology was considered in order to facilitate adequate mechanical characterization of the final hot-stamped panels.

Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites (액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성)

  • Lee, Moon-Hee;Cho, Kyung-Seo;Lee, Sang-Pill;Lee, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

Fracture Properties of Carbon Coated LPS-SiCf/SiC Composites (액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성)

  • Kim, Sung-Won;Lee, Moon-Hee;Hwang, Seung-Kuk;Lee, Sang-Pill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Mechanical properties of carbon coated $SiC_f/SiC$ composites have been investigated, in conjunction with a detailed analysis of microstructure. Especially, the fracture behavior of $SiC_f/SiC$ composites by the induction of carbon coating layers has been examined. The matrix region of $SiC_f/SiC$ composites with ultra-fine SiC powders were consolidated by a liquid phase sintering (LPS) process, using a sintering additive of $Al_2O_3-Y_2O_3$ powder compound. In this composite, plain and satin- woven Tyranno SA fabrics were also utilized as a reinforcing material. A carbon interfacial layer was coated around satin-woven SiC fabrics. The characterization of LPS-$SiC_f/SiC$ composites was investigated by means of SEM and three point bending test.