• Title/Summary/Keyword: SiC Ceramics

Search Result 546, Processing Time 0.031 seconds

Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (탄소 원료가 다공질 Self-Bonded SiC (SBSC) 세라믹스의 기공율과 곡강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.430-437
    • /
    • 2008
  • Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 to $1850^{\circ}C$ using SiC, silicon (Si), and three different carbon (C) sources, including carbon black, phenol resin, and xylene. The effects of the Si:C ratio and carbon source on porosity and strength were investigated as a function of sintering temperature. Porous SBSC ceramics fabricated from phenol resin showed higher porosity than the others. In contrast, porous SBSC ceramics fabricated from carbon black showed better strength than the others. Regardless of the carbon source, the porosity increased with decreasing the Si:C ratio whereas the strength increased with increasing the Si:C ratio.

Formation of SiC layer on Single Crystal Si Using Hot-Filament Reactor

  • Kim, Hong-Suk;Park, In-Hoon;Eun, Kwang-Yong;Baik, Young-Joon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.25-27
    • /
    • 1998
  • The effect of gas activation on the formation of SiC layer on Si substrate using methane as a carbon source was investigated. Tungsten filaments, heated above 200$0^{\circ}C$, were used to activate the methane-hydrogen mixed gas. The dissociation of methane gas by the heated filament was enough to form a SiC layer successfully, which was very difficult without any activation. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The stoichiometry was also close to 1:1. However, the characteristic of the SiC layer was dependent on the heat-treatment condition. The general behavior of the layer growth with the variables was discussed.

  • PDF

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 1: Microstructure and Mechanical Properties of SiC-based Ceramic Cutting Tools (SiC계 세라믹 절삭공구의 절삭특성 평가 Part 1: SiC계 절삭공구의 미세구조와 기계적 특성)

  • Park, June-Seuk;Kim, Kyeug-Jae;Shim, Wan-Hee;Kwon, Won-Tae;Kim, Young-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.82-88
    • /
    • 2001
  • In order to fulfil the requirements of the various performance profiles of ceramic cutting tools, six different SiC-based ceramics have been fabricated by hot-pressing (SiC--${Si}_3 {N}_4$composites) or by hot-pressing and subsequent annealing (monolithic SiC and SiC-TiC composites). Correlation between the annealing time and the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The grain size of both ${Si}_3 {N}_4$and SiC in SiC-${Si}_3 {N}_4$composites increased with the annealing time. Monolithic SiC has the highest hardness, SiC-TiC composite the highest toughness, and the SiC-${Si}_3 {N}_4$composite the highest strength among the ceramics investigated. The hardness of SiC-${Si}_3 {N}_4$composites was relatively independent of the grain size, but dependent on the sintered density. The cutting performance of the newly developed SiC-based ceramic cutting tools will be described in Part 2 of this paper.

  • PDF

Influence of SiC Content and Heat Treatments on Strength of Al2O3 Ceramics ($Al_2O_3$ 세라믹스의 강도에 미치는 소결 첨가제 SiC의 함량과 열처리의 영향)

  • Kim, G.U.;Moon, C.K.;Yoon, H.K.;Kim, B.A.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.67-72
    • /
    • 2011
  • In the present study, crack healing effect and residual stress of $Al_2O_3$ ceramics were investigated by changing the sintering temperature and heat treatment conditions. And also it was investigated that the influence of different filler loadings of nano-sized SiC particles on the crack healing behavior of $Al_2O_3$ ceramics. The test samples were characterized by three point bend flexural tests to evaluate their mechanical properties. The morphological changes were studied by FE-SEM and EDS. The test results indicated that the $Al_2O_3$ with nano-sized SiC ceramics sintered at $1800^{\circ}C$ were showed highest density. Sintering temperature at $1800^{\circ}C$, the bending strength of heat treatment in air atmosphere specimens showed about 42 % increment in comparison to the un-heat treated specimens. The cracked specimens can be healed by heat treatment in vacuum atmosphere but the crack healing effect of $Al_2O_3$ ceramics, which is heat treated in air atmosphere was higher than that of heat treated in vacuum atmosphere. $Al_2O_3$ with 30 wt% of SiC ceramics indicated higher crack healing ability than that with 15 wt% of SiC ceramics. The FE-SEM images showed that the median cracks and pores were disappeared after heat treatment in air.

Sintering Characteristics of Si/SiC Mixtures from Si Waste of Solar Cell Industry (태양광(太陽光) 산업(産業)에서 발생(發生)하는 Si/SiC 혼합물(混合物)의 소결특성(燒結特性) 연구(硏究))

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee;Lee, Yoon Joo;Kim, Jong Il;Lee, Hyun Jae;Oh, Sea Cheon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • The recycling of the Si/SiC mixture sludge obtained from solar cell industry is very significant, environmentally and economically. The sintering characteristics of Si/SiC mixture sludge was studied for the purpose of recycling. In this study, to understand sintering behavior, SiC content in the Si/SiC mixture was controlled using an air separator. Various Si/SiC mixtures having different SiC contents were sintered using carbon black, clay and aluminum hydroxide as sintering aids. Physical properties of Si/SiC mixture and sintered bodies have been characterized using SEM, XRD, particle size analyzer and apparent density measurement. SEM and particle size analysis result confirmed that the fine particles less than 1 ${\mu}m$ decreased or removed more effectively through the air separator in the case of 95% SiC sample compared than the case of 75% SiC sample or original SiC sample. Further, with addition of the Aluminum Hydroxide, ${\beta}$-cristobalite phase gradually decreased while mullite phase gradually increased. The addition of the carbon black improved the sintering characteristics.

A Feasibility Study on the Application of Ultrasonic Method for Surface Crack Detection of SiC/SiC Composite Ceramics (SiC/SiC 복합재료 세라믹스 표면균열 탐지를 위한 초음파법 적용에 관한 기초연구)

  • Nam, Ki-Woo;Lee, Kun-Chan;Kohyama, Akira
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2009
  • Nondestructive evaluation(NDE) of ceramic matrix composites is essential for developing reliable ceramics for industrial applications. In the work, C-Scan image analysis has been used to characterize surface crack of SiC ceramics nondestructively. The possibility of detection of surface crack were carried out experimentally by two types of ultrasonic equipment of SDS-win and $\mu$-SDS, and three types of transducer of 25, 50 and 125 MHz. A surface micro-crack of ceramics was not detected by transducer of 25 MHz and 50 MHz. Though the focus method was detected dimly the crack by transducer of 125 MHz, the defocus method could detect the shape of diamond indenter. As a whole, the focus method and the defocus method came to the conclusion that micro crack have a good possibility for detection.

Friction and wear characteristics during sliding of ${ZrO}_{2}, {Si}_{3}{N}_{4}$ and SiC with SiC, AISI 4340 and bronze under dry and lubricated condition (세라믹 ${ZrO}_{2}, {Si}_{3}{N}_{4}$ 및 SiC를 SiC, AISI 4340 및 청동으로 윤활 및 건조조건에서 미끄름시험하였을 때의 마찰 및 마멸 거동)

  • 강석춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.404-410
    • /
    • 1989
  • Friction and wear tests were conducted with several different ceramics sliding against ceramic and metal couples with and without lubricant in a two disk type sliding machine. The purpose was to know the tribological properties of ceramics. With very different physical and chemical properties of ceramics compared to metal, the tribological properties of ceramics should be defined in detail. Among them, the wear and friction with same or different couple is very important. Also the lubrication of ceramic is one of the major area to be studied. From this research, SiC, SI$_{3}$N$_{4}$ and ZrO$_{2}$ were slid against SiC, AISI 4340 and bronze under various sliding condition. It was found that the friction and wear of ceramics are strongly dependent on the sliding condition. For unlubricated sliding against SiC, ZrO$_{2}$ shows low wear and friction coefficient over wide lange of load, but with lubricated sliding, SiC shows better performance whatever lubricants were used. Also the effect of lubricant depended upon the material properties of sliding pairs. The general tribological properties of ceramics were not correlated with chattering and noise at low load but it could be reduced or avoided effectively by using lubricants. SiC and Si$_{3}$N$_{4}$ slid against SiC have transition from mild to severe wear at high load but ZrO$_{2}$-SiC and SiC-steel have not. Wear debris formed on the contact area of SiC couples was main cause of the initiation of transition. At high speed, only ZrO$_{2}$ sliding against SiC has transition of wear by low thermal conductivity.

Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering (상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조)

  • Choi, Woong;Lee, Jong-Kook;Cho, Duk-Ho;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF

The Effect of Slurry and Wafer Morphology on the SiC Wafer Surface Quality in CMP Process (CMP 공정에서 슬러리와 웨이퍼 형상이 SiC 웨이퍼 표면품질에 미치는 영향)

  • Park, Jong-Hwi;Yang, Woo-Sung;Jung, Jung-Young;Lee, Sang-Il;Park, Mi-Seon;Lee, Won-Jae;Kim, Jae-Yuk;Lee, Sang-Don;Kim, Ji-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.312-315
    • /
    • 2011
  • The effect of slurry composition and wafer flatness on a material removal rate (MRR) and resulting surface roughness which are evaluation parameters to determine the CMP characteristics of the on-axis 6H-SiC substrate were systematically investigated. 2-inch SiC wafers were fabricated from the ingot grown by a conventional physical vapor transport (PVT) method were used for this study. The SiC substrate after the CMP process using slurry added oxidizers into slurry consisted of KOH-based colloidal silica and nano-size diamond particle exhibited the significant MRR value and a fine surface without any surface damages. SiC wafers with high bow value after the CMP process exhibited large variation in surface roughness value compared to wafer with low bow value. The CMPprocessed SiC wafer having a low bow value of 1im was observed to result in the Root-mean-square height (RMS) value of 2.747 A and the mean height (Ra) value of 2.147 A.