• 제목/요약/키워드: Si3N4

검색결과 2,119건 처리시간 0.038초

고강도 $Si_3N_4/SiC$ 구조세라믹스에 관한 연구 (High Strength $Si_3N_4/SiC$ Structural Ceramics)

  • 김병수;김인술;장윤식;박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.999-1006
    • /
    • 1993
  • Si3N4(p)-SiC(p) composites were prepared by gas pressure sintering at 190$0^{\circ}C$ for 1 hour. $\alpha$-SiC with average particle size of 0.48${\mu}{\textrm}{m}$ were dispersed from zero to 50vol% in $\alpha$-Si3N4 with average particle size of 0.5${\mu}{\textrm}{m}$. Y2O3-Al2O3 system was used as sintering aids. When 10vol% of SiC was added to Si3N4, optimum mechanical properties were observed; relative density of 98.8%, flextural strength of 930MPa, fracture toughness of 5.9MPa.m1/2 and hardness value of 1429kg/$\textrm{mm}^2$. Grain growth of $\beta$-Si3N4 was inhibited as the amount of added SiC was increased. SiC particles were found inside the $\beta$-Si3N4 intragrains in case of 10, 20 and 30vol%SiC added composites.

  • PDF

$Si_3N_4$계 세라믹 절삭공구의 절삭특성 평가 (Cutting Characteristic of $Si_3N_4$ based Ceramic Inserts)

  • 안영진;고영목;권원태;김영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.655-659
    • /
    • 2002
  • This study is performed to develop the Si$_3$N$_4$ based ceramic inserts. Si$_3$N$_4$with addition of SiC and A1$_2$O$_3$ is investigated to determine the possibility to be a new tool. The tool life of Si$_3$N$_4$ insert with more than 20wt% SiC is shorter than commercial Si$_3$N$_4$ insert during machining both heat treated SCM440 and gray cast iron. Even though SiC has higher hardness than Si$_3$N$_4$, its chemical affinity to the iron on high temperature may causes deteriorat ion of tool life. To the contrary, Si$_3$N$_4$insert with A1$_2$O$_3$ shows increase of tool life up to 300% compared to the commercial Si$_3$N$_4$insert. It may attribute to the high temperature stability of A1$_2$O$_3$. Further study will be focused on the optimization of ceramic inserts with the composition of Si$_3$N$_4$and A1$_2$O$_3$.

  • PDF

$Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향 (Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites)

  • 이창주;김득중
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

청색광 검출 Si Photodiode에서 $SiO_{2}/Si_{3}N_{4}$ 광반사 방지막의 최적두께 설계

  • 서동균;황용운;장지근
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2004년도 춘계학술대회 발표 논문집
    • /
    • pp.67-71
    • /
    • 2004
  • 400~450nm 파장 범위의 청색광을 검출하는 Si 포토다이오드에서 $SiO_2$, $Si_{3}N_{4}$, $SiO_{2}/Si_{3}N_{4}$를 광반사 방지막으로 사용하는 경우 광반사 방지막의 두께에 따른 표면 광반사 손실을 이론적으로 계산하였다. 400~450nm 청색 파장에서 $SiO_2$, $Si_{3}N_{4}$ 단일막에 대한 최소 광반사 손실은 각각 $d(SiO_2)=700~750{\AA}$$d(Si_{3}N_{4})=500${\AA}$에서 나타났으며, $SiO_{2}/Si_{3}N_{4}$ 이중막에 대한 최소 광반사 손실은 $d(SiO_{2}/Si_{3}N_{4})=750{\AA}/(180~200){\AA}$에서 나타났다.

  • PDF

SiC-$Si_3N_4$ 세라믹 절삭공구의 미세구조 및 절삭특성 (Microstructure and Cutting Characteristics of SiC-$Si_3N_4$ Ceramic Cutting Tool)

  • 권원태;김영욱
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1944-1949
    • /
    • 2001
  • Four SiC-Si$_3$N$_4$ceramic cutting tools with different composition have been fabricated by hot-pressing. Correlations among the annealing time, the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The fracture toughness and the grain size of both SiC and Si$_3$N$_4$in SiC-Si$_3$N$_4$composites increased with the annealing time. 1\`he hardness of SiC-Si$_3$N$_4$composites was relatively independent of the grain size and the sintered density. These ceramic cutting tools were tested under various cutting conditions and compared with the commercial Si$_3$N$_4$ceramic cutting tools. The experimental results were compared in terms of tool life and cutting force. The performance of SiC-Si$_3$N$_4$ceramic cutting tool shows the possibility to be a new ceramic tool.

Hybrid Plasma Processing에 의한 Si3N4-SiC계 미립자의 합성과정 제어 (Process Control for the Synthesis of Ultrafine Si3N4-SiC Powders by the Hybrid Plasma Processing)

  • 이형직
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.681-688
    • /
    • 1992
  • Ultrafine Si3N4 and Si3N4+SiC mixed powders were synthesized through thermal plasma chemical vapor deposition(CVD) using a hybrid plasma, which was characterized by the supersposition of a radio-frequency plasma and arc jet. The reactant SiCl4 was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant CH4 and/or NH3 mixed with H2 were injected into the tail flame through double stage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction efficiency increased significantly by double stage injection compared to single stage one, although crystallizing behaviors depended upon injection speed of reactive quenching gas (NH3+N2) and injection method. For the preparation of Si2N4+SiC mixed powders, N/C composition ratio could be controlled by regulating the injection speed of NH3 and/or CH4 reactant and H2 quenching gas mixtures as well as by adjusting the reaction space.

  • PDF

용융염계에서 자전연소합성법에 의한 α-Si3N4분말의 제조 - Part 1.분말의 합성 (Preparation of α-Si3N4 Powder in Reaction System Containing Molten Salt by SHS - Part 1. Synthesis of Powder)

  • 윤기석;이종현;;원창환;정헌생
    • 한국세라믹학회지
    • /
    • 제41권3호
    • /
    • pp.235-242
    • /
    • 2004
  • 원재료로서 Si, NH$_4$Cl, NaN$_3$, NaCl을 사용하고 SHS법을 이용하여 $\alpha$-Si$_3$N$_4$ 분말을 제조하였다. NH$_4$Cl과 NaN$_3$는 첨가제로서, NaCl은 희석제로서 사용되었고 반응기내 최초 $N_2$ 압력은 60 atm이었다. $\alpha$-Si$_3$N$_4$분말을 제조함에 있어, 첨가제의 종류와 조성, 희석제의 첨가량에 따른 반응성 및 생성물의 특성을 조사하였는데, 우선 $\alpha$-Si$_3$N$_4$ 분말의 제조를 위한 최적의 반응계를 조사하였고, 최적의 반응계에서 최적의 조성을 확립하였다. 최적의 반응계는 Si-$N_2$-additive(NH$_4$C+NaN$_3$)-diluent(NaCl)이었고, 이때 최적의 조성은 38wt%Si+22.5wt%NH$_4$Cl+27.5wt%NaN$_3$+l2wt%NaCl이었다. 이 조건에서 생성된 최고 $\alpha$-Si$_3$N$_4$의 분율은 96.5wt%이었으며 생성된 분말의 입형은 길이가 약 10 $mu extrm{m}$이고 직경이 약 1 $\mu\textrm{m}$인 일방향으로 길게 성장한 부정형의 fiber 형태였다.

Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조 (Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal)

  • 정창주;장복기;문종하;강경인
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

알콕사이드로부터 Si-Al-O-N계 분말합성 I. 알콕사이드로부터 Si3N4와 $\beta$-Sialon 초미분말 합성 (Synthesis of Powder of the System Si-Al-O-N from Alkoxides I. Synthesis of Si3N4 and $\beta$-Sialon Ultrafine Powders from Alkoxides)

  • 이홍림;유영창
    • 한국세라믹학회지
    • /
    • 제24권1호
    • /
    • pp.23-32
    • /
    • 1987
  • Synthesis of high purity ultrafine Si3N4 and ${\beta}$-Sialon powders was investigated via the simultaneous reduction and nitriding of amorphous SiO2, SiO2-Al2O3 system prepaerd by hydrolysis of alkoxides, using carbonablack as a reducing agent. In Si(OC2H5)4-C2H5 OH-H2 O-NH4OH system, hydrolysis rate increased with increasing reaction temperature and pH. Pure ${\alpha}$-Si3N4 was formed at 1350$^{\circ}C$ for 5 hrs in N2 atmosphere. In Si(OC2H5)4-Al(OC3H7)3-C6H6-H2 O-NH4OH system, weight loss increased as Si/Al ratio decreased. Single phase ${\beta}$-Sialon consisted of Si/Al=2 was formed at 1350$^{\circ}C$ in N2 and minor phases of ${\alpha}$-Si3N4, AIN, and X-phase were existed besides theSialon phase at other Si/Al ratios. The Si3N4 and Sialon powders synthesized from alkoxides consisted of uniform find particles of 0.05-0.2$\mu\textrm{m}$ in diameter, respectively.

  • PDF

In-Situ 반응소결에 의한 전도성 $Si_3N_4$-TiN 복합세라믹스 제조 (Fabrication of Electroconductive $Si_3N_4$-TiN Ceramic Composites by In-Situ Reaction Sintering)

  • 이병택;윤여주;박동수;김해두
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.577-582
    • /
    • 1999
  • 전도성 $Si_3N_4$-TiN 세라믹 복합재료를 제조하기 위해 성형체를 $1450^{\circ}C$에서 20시간 질화처리한 후 $1950^{\circ}C$에서 3.5시간 가스압소결 기술에 의해 후소결하였다. 초기 분말로 약 $10\mu\textrm{m}$로 된 상용 Si분말, 100mesh와 325mesh로된 Ti분말, 그리고 미세한 $\2.5mu\textrm{m}$ TiN분말을 사용하였다. Ti분말울 사용한 $Si_3N_4$-TiN 소결체에서 상대밀도 및 파괴인성값은 다량의 조대한 기공의 존재로 인하여 낮은 값을 보였다. 그러나 TiN분말을 사용한 $Si_3N_4$-TiN 복합체에서 파괴인성, 파괴강도 및 전기저항은 각각 $5.0MPa{\cdot}m^{1/2}$, 624MPa 그리고 $1400{\omega}cm$였다. 복합체에서 TiN 업자의 분산은 $Si_3N_4$ 업자의 조대한 봉상형태로의 성장올 방해하며 $Si_3N_4$/TiN 계면에 강한 변형장울 만든다. $Si_3N_4$-TiN 복합체의 전기전도도 및 기계적 특성을 향상시키기 위해 TiN 업자가 균일하게 분산 된 미세조직 제어가 요망된다.

  • PDF