• 제목/요약/키워드: Si-DLC

검색결과 132건 처리시간 0.025초

PECVD에 의한 DLC 박막의 성장과 그 특성 조사 (The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization)

  • 조재원;김태환;김대욱;최성수
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.248-254
    • /
    • 1998
  • PECVD(Plasma Enhanced Chemical Vapor Deposition) 방법을 이용하여 비정질 고 상 탄소 박막의 하나인 유사 다이아몬드(Diamond-Like-Carbon; DLC) 박막을 증착하였다. FT-IR Spectroscopy와 Raman Scattering 등을 통해 박막의 구조적 특징을 조사하였는데, 박막은 microcrystalline diamond domain과 graphitelike carbon domain들이 수소화된 $sp^3$사 면체 구조의 비정질 탄소에 의해 그물 구조로 연결되어진 것으로 보인다. 이러한 추정은 I-V 특성 조사의 결과와도 좋은 일치를 보이는데, 특히 I-V조사에서는 전류의 갑작스러운 증가가 관측되어졌으며 이것은 graphitelike carbon domin들간의 전자 tunneling 현상으로 이해되어진다. 그리고 대단히 얇은 탄소 박막에 대한 Raman산란 조사에서는 증착 초기 상 태에 $\beta$-SiC층이 형성되어지는 것을 확인할 수 있었다.

  • PDF

PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석 (An analysis of tribological properties of the metal interlayered DLC films prepared by PECVD method)

  • 전영숙;최원석;박용섭;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.951-954
    • /
    • 2004
  • 본 논문에서는 DLC(Diamond-like Carbon) 박막과 기판 사이에 금속층을 포함하는 DLC 박막의 기계적 특성을 분석하였다. 금속층은 sputtering법을 사용하고, DLC 박막은 PECVD법을 사용하여 각각 중착하였다. 티타늄(Ti), 니켄(Ni), 크롬(Cr)을 각 중간 금속층으로 사용한 후 DLC 박막과 실리콘(Si) 기판 간의 기계적 특성을 분석하였다. 각 막의 두께는 FE-SEM으로 확인하였고, DLC 박막의 구조 평가는 Raman spectrometer를 사용하여 분석하였으며, 각 금속층과 DLC 박막의 표면 상태는 AFM을 이용하여 확인하였다. XRD 분석을 통하여 박막의 격자분석을 하였고, SIMS(secondary ion mass spectrometry) 분석을 통하여 DLC 박막의 depth Profile을 확인하였다.

  • PDF

이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구 (Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam)

  • 이상극;오병윤;김병용;한진우;김영환;옥철호;김종환;한정민;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

플라즈마 화학 기상 증착법으로 제작된 Diamond-Like Carbon 박막의 특성 (Characterizations of Diamond-Like Carbon Films Prepared by the Plasma Enhanced Chemical Vapor Deposition Method)

  • 김종탁
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.465-471
    • /
    • 1998
  • Diamond-like carbon (DLC) films have been prepared by means of the plasma enhanced chemical vapor deposition (PECVD) method using vertical-capacitor electrodes. The deposition rata in our experiment is relatively small compared with that in the conventional PECVD methods, which implies that the accumulation of the neutral $CH_n$ radicals on the substrates due to the gravitational movement may not contribute to the deposition of DLC films. The hardness and the transparency were measured as a function of the ratio of the partial pressure of $CH_4-H_2$ mixtures or the hydrogen contents of specimens. The coefficients of friction between DLC films and a $Si_3N_4$ tip measured by using a lateral force microscope are in the range of 0.024 to 0.033 which depend on the hydrogen contents in DLC, and the surface roughness depends mainly on the deposition rate. The optical gaps increase with increasing the hydrogen contents. DCL films deposited on Pt-coated Si wafers show the stable emission characteristics, and the turn-on fields are in the range of 11 to 20 $V/\mu$m.

  • PDF

멤브레인 구조를 위한 DLC 박막의 특성에 관한 연구 (A study of properties of DLC films for membrane structure)

  • 이태용;김응권;박용섭;홍병유;송준태;박영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.748-752
    • /
    • 2004
  • The Hydrogenated amorphous carbon (a-C:H) thin films are deposited to fabricate suppored layer on silicon substrate with a closed field unbalanced magnetron(CFUBM) sputtering system. This study focuses on the characteristic of Diamond like carbon (DLC) films and Pb(Zr,Ti)$O_3$ (PZT) films for membrane structure. The deposition rate and the surface roughness of DLC fims decrease with DC bias voltage. hardness is 26 GPa at -200 V. Interface of DLC/Si and Pt/DLC layers was excellent.

  • PDF

Tribological Charactristics of Diamond-like Carbon Deposited on Ferrite

  • Nam-Soo Kim;Dae Soon Lim;Heng-Wook Kim;Sang-Ro Lee
    • The Korean Journal of Ceramics
    • /
    • 제1권4호
    • /
    • pp.185-190
    • /
    • 1995
  • Tribological behavior of the diamond-like carbon (DLC) films sliding on floppy disk has been investigated. Hydrogenated DLC films have been prepared by plasma enhanced chemical vapor deposition (PECVD) using methane and hydrogen mixture in different volume ratios on ferrite substrates. DLC films show lower friction coefficients (0.2~0.4) than those of the uncoated ferrite(0.4~0.5). DLC films containing more hydrogen exhibit higher wear resistance. To investigate the roughness effect on wear, the substrates were polished with SiC papers prior to deposition. Too fine or too rough DLC surfaces result in poor wear resistance. Wear resistance of annealed DLC films at higher temperature slightly increases with respect to as-deposited film.

  • PDF

TiC 이온 주입 층에 증착된 DLC 박막의 트라이볼로지적 특성 (Tribological Properties of DLC film on Modified Surface by TiC Plasma Immersion Ion Implantation and Deposition)

  • 이진우;김종국;김석삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.956-960
    • /
    • 2004
  • Effects of ion implantation and deposition on the tribological properties of DLC film as a function of implanted energies and process times were investigated. TiC ions were implanted and deposited on the Si-wafer substrates followed by DLC coating using ion beam deposition method. In order to study tribological properties such as friction coefficient and behavior of DLC film on the modified surface as a function of implanted energies and process times, we used a ball-on-disc type apparatus in the atmospheric environment. From results of wear test, as the implanted energy was increased, the friction coefficient was more stable below 0.1.

  • PDF

다층구조 유사다이아몬드 박막의 전계방출 특성연구 (Field Emission characteristics of Multi-layered Diamond-Like carbon films)

  • 김종탁
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.426-430
    • /
    • 2000
  • We have studied the field emission characteristics of multi-layered diamond-like-carbon (DLC) films deposited by vertical electrodes type plasma enhanced chemical vapor deposition with CH$_4$ and H$_2$ mixture. We deposited a thin layer of DLC on the p$^{+}$-Si substrate and then turned off plasma before another deposition of a new DLC layer. The thickness and the number of DLC layers are varied. The emission characteristics of multi-layered DLC films were compared with conventional one. The multi-layered DLC film shows higher emission current than conventional one.e.

  • PDF

수중 환경에서 수소로 희석된 반응 가스를 이용하여 증착된 DLC 박막의 트라이볼로지 거동 (Tribological Behaviors of DLC Thin Films Deposited using Precursor Gas diluted by Hydrogen under Aqueous Environment)

  • 이진우;문명운;이광렬
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.338-339
    • /
    • 2012
  • This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (100) and polished stainless steel substrates by r.f.-PACVD at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a home-made ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppress the initiation of defects in the film and improved the adhesion of the coating to the interface.

  • PDF

스크래치 시험을 통한 DLC 박막 파손과 밀착 특성 평가 (Evaluation of Failure Modes and Adhesion of DLC Films by Scratch Test)

  • 김주희;박찬형;안효석
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.127-133
    • /
    • 2017
  • In order to characterize the adhesive properties and failure mechanisms of diamond-like carbon (DLC) films of two different thicknesses (130 nm and $1.2{\mu}m$), deposited by plasma-enhanced chemical vapor deposition on a Si substrate, scratch testing with a micro-indenter ($12.5{\mu}m$ tip radius) was performed under a linearly increasing load. These scratch tests were conducted under the same test conditions for both films. The critical load of each film was estimated from the scratch test results, based on a sharp increase in the coefficient of friction and a clear distinction of failure modes. The critical load was the basis for evaluating the adhesion strength of the films, and the $1.2{\mu}m-thick$ DLC film had superior adhesion strength. For better understanding of the failure modes, the following analyses were conducted: friction behavior and scratch tracks analysis using scanning electron microscopy, energy-dispersive spectroscopy, and 3-D profilometry. The scratch test results showed that failure modes were related to the thickness of the films. The 130 nm-thick DLC film underwent cohesive failure modes (cracks and chipping) before reaching to a gross failure stage. On the other hand, the thicker DLC film ($1.2{\mu}m-thick$) did not exhibit micro cracks before a sudden gross failure of the film together with the evidence of cracking and chipping of the Si substrate.