• Title/Summary/Keyword: Si-Alloy

Search Result 1,255, Processing Time 0.027 seconds

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구)

  • Kim, Heon-Joo;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting (고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation (고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Effects of Mg and Si on Microstructure and Mechanical Properties of Al-Mg Die Casting Alloy (Al-Mg 계 다이캐스팅 합금의 미세조직 및 기계적 성질에 미치는 Mg 및 Si의 영향)

  • Cho, Jae-Ik;Kim, Cheol-Woo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.219-224
    • /
    • 2012
  • The effects of Mg and Si contents on the microstructure and mechanical properties in Al-Mg alloy (ALDC6) were investigated. The results showed that phase fraction and size of $Mg_2Si$ and $Al_{15}(Fe,Mn)_3Si_2$ phase in the microstructure of Al-Mg alloy were increased as the Mg and Si contents were raised from 2.5 to 3.5 wt%. With Si content of 1.5 wt%, freezing range of the alloy was significantly reduced and solidification became more complex during the final stage of solidification. While there was no significant influence of Mg contents on mechanical properties, Si contents up to 1.5 wt%, strongly affected the mechanical properties. Especially elongation was reduced by about a half with more than 1.0 wt%Si in the alloy. The bending and impact strength were decreased with increased amount of Si in the alloy, as well. The lowered mechanical properties are because of the growth of particle shaped coarse $Mg_2Si$ phase and precipitation of the needle like $\beta$-AlFeSi in the microstructure at the last region to solidify due to presence of excess amount of Si in the alloy.

Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting. (Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직)

  • Choe, Jeong-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.