• Title/Summary/Keyword: Si thin film solar cells

Search Result 150, Processing Time 0.032 seconds

Present Status of Thin Film Solar Cells Using Textured Surfaces: A Brief Review

  • Park, Hyeongsik;Iftiquar, S.M.;Le, Anh Huy Tuan;Ahn, Shihyun;Kang, Junyoung;Kim, Yongjun;Yi, Junsin;Kim, Sunbo;Shin, Myunghun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.275-279
    • /
    • 2016
  • This is a brief review on light trapping in Si based thin film solar cells with textured surfaces and transparent conducting oxide front electrodes. The light trapping scheme appears to be essential in improving device efficiency over 10%. As light absorption in a thin film solar cells is not sufficient, light trapping becomes necessary to be effectively implemented with a textured surface. Surface texturing helps in the light trapping, and thereby raises short circuit current density and its efficiency. Such a scheme can be adapted to single junction as well as tandem solar cell, amorphous or micro-crystalline devices. A tandem cell is expected to have superior performance in comparison to a single junction cell and random surface textures appears to be preferable to a periodic structures.

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

A Study on the Application of Thin Film Passivation and Crystalline Silicon Solar Cells Using PECVD Process (PECVD 공정을 이용한 후면 패시베이션 및 결정질 실리콘 태양전지 적용에 관한 연구)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.68-71
    • /
    • 2020
  • In this study, SiNx and Al2O3 thin film was manufactured using PECVD deposition process and applied to crystalline silicon solar cells, resulting in 16.7% conversion efficiency. The structural improvement experiment of the rear electrode resulted in a 1.7% improvement in conversion efficiency compared to the reference cell by reducing the recombination rate of minority carriers and increasing the carrier lifetime by forming a passivation layer consisting of SiNx and Al2O3 thin films through the PECVD process.

R&D activities of a-Si:H thin film solar cells by LG Electronics

  • Lee, Don-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.19-19
    • /
    • 2007
  • Recently, we have developed p-i-n hydrogenated amorphous silicon (a-Si:H) single junction (SJ) thin film solar cells with RF (13,56MHz) plasma enhanced chemical vapor deposition (PECVD) systems, and also successfully fabricated the mini-modules (>300$cm^2$), using laser scribing technique to form an integrated series connection, The efficiency of a mini-module was 7.4% (Area=305$cm^2$, $I_{SC}$=0.25A, $V_{OC}$=14.74V, FF=62%).

  • PDF

A Study on the Residual Stress Analysis of a-Si Thin Film Solar Cell (a-Si 박막형 태양전지의 잔류응력 해석에 관한 연구)

  • Hur, Jang-Wook;Kim, Dong-Wook;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.14-19
    • /
    • 2013
  • The size and distribution of residual stresses and the effect of the minimum mesh size were investigated by the a-Si thin film solar cell. Attributed to the difference in coefficient of thermal expansion of the a-Si and Ag concentrated residual stresses at the joint interface of dissimilar materials. The ${\sigma}y$ and ${\tau}xy$ didn't appear in the central part, but ${\sigma}x$ existed. However, ${\sigma}x$, ${\sigma}y$ and ${\tau}xy$ appeared in the edge part and concentrated residual stresses at the interface between a-Si and Ag. Minimum mesh size gets smaller, the concentration of ${\sigma}y$ was significantly and existence area was reduced. As a result, the failure of thin film solar cells during the cutting process can be explained by the residual stresses.

Poly-Si Thin Film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1034-1037
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$. The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ ($<200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC varies with $T_f$.

  • PDF

Influence of Crystalline Si Solar Cell by Rie Surface Texturing (RIE 표면 텍스쳐링 모양에 따른 결정질 실리콘 태양전지의 영향)

  • Park, In-Gyu;Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Yong;Kim, Joung-Sik;Kang, Hyoung-Dong;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • We fabricated a plasma texturing for multi-crystalline silicon cells using reactive ion etching (RIE). Multi-crystalline Si cells have not benefited from the cost-effective wet-chemical texturing processes that reduce front surface reflectance on single-crystal wafers. Elimination of plasma damage has been achieved while keeping front reflectance to extremely low levels. We will discuss reflectance, quantum efficiency and conversion efficiency for multi-crystalline Si solar cell by each RIE process conditions.

Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System (광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향)

  • Kang, Jeong-Wook;Son, Chan-Hee;Cho, Guang-Sup;Yoo, Jin-Hyuk;Kim, Joung-Sik;Park, Chang-Kyun;Cha, Sung-Duk;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The conversion efficiency of solar cells depending on incident angle of light is important for building-integrated photovoltaics (BIPV) applications. The quantum efficiency is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The analysis of angle dependence of quantum efficiencies give more information upon the variation of power output of a solar cell by the incident angle of light. The variations in power output of solar cells with increasing angle of incidence is different for the type of cell structures. In this study we present the results of the quantum efficiency measurement of single-crystalline silicon solar cells and a-Si:H thin-film solar cells with the angle of incidence of light. As a result, as the angle of incidence increases in single-crystalline silicon solar cells, quantum efficiency at all wavelength (300~1,100 nm) of light were reduced. But in case of a-Si:H thin-film solar cells, quantum efficiency was increased or maintained at the angle of incidence from 0 degree to about 40 degrees and dramatically decrease at more than 40 degrees in the range of visible light. This results of quantum efficiency with increasing incident angle were caused by haze and interference effects in thin-film structure. Thus, the structural optimization considering incident angle dependence of solar cells is expected to benefit BIPV.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF