• Title/Summary/Keyword: Si surface

Search Result 4,895, Processing Time 0.035 seconds

Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer (SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향)

  • Park, Ji Yeon;Jeong, Myung Hoon;Kim, Daejong;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.

The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment (아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선)

  • 이승호;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Effect of cleaning process and surface morphology of silicon wafer for surface passivation enhancement of a-Si/c-Si heterojunction solar cells (실리콘 기판 습식 세정 및 표면 형상에 따른 a-Si:H/c-Si 이종접합 태양전지 패시배이션 특성)

  • Song, JunYong;Jeong, Daeyoung;Kim, Chan Seok;Park, Sang Hyun;Cho, Jun-Sik;Yun, Kyounghun;Song, Jinsoo;Lee, JeongChul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.2-99.2
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafer and surface morphology. It is observed that passivation quality of a-Si:H thin-films on c-Si wafer highly depends on wafer surface conditions. The MCLT(Minority carrier life time) of wafer incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with cleaning process and surface morpholgy. By applying improved cleaning processes and surface morphology we can obtain the MCLT of $200{\mu}sec$ after H-termination and above 1.5msec after i a-Si:H thin film deposition, which has implied open circuit voltage of 0.720V.

  • PDF

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

Properties of Ni-P-SiC Composite Coating Layers Prepared by Electroless Plating Method (무전해도금법으로 형성한 Ni-P-SiC 복합도금막의 특성)

  • Lee, Hong-Kee;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.70-76
    • /
    • 2007
  • Ni-P-SiC composite coating layers were prepared by electroless plating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. The deposition rate was kept almost constant independent of the concentration of SiC in the plating solution and the codeposition of SiC in the composite coating layer increased with increased concentration of SiC in the plating solution except the early stage. Vickers microhardness increased with respect to the increased codeposition of SiC and the heat treatment at $300^{\circ}C$ in air for 1 hour. It was found that the wear volume decreased with increased up to 50 wt.% of SiC codeposition, and that friction coefficient increased gradually with increased codeposition of SiC. Considering the wear and the friction behaviors, the composite coating layer obtained by using 50 wt.% of SiC codeposition is desirable for the practical application for anti-wear and anti-friction coatings.

The Oxidation of Polymethylsiloxane/MoSi$_2$/SiC/Si-Derived Ceramic Composite Coatings

  • Moon, Jae-Jin;Lee, Dong-Bok;Kim, Deug-Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.85-88
    • /
    • 2003
  • By utilization of preceramic polymer of polymethylsiloxane (PMS), a $MoSi_2$SiOC/SiC ceramic composite was fabricated. The prepared composite displayed superior high temperature oxidation resistance by forming $SiO_2$ on the surface. The thin $SiO_2$ layer had some surface cracks, but they had not adversely deteriorated the oxidation resistance. The composite fabrication method employed in this study can be applied to protect any possible substrate material from aggressive oxidative attack, if the composite were coated on the substrate material.

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Study of the growth of Au films on Si(100) and Si films on Ge(100) surface

  • Kim, J.H.;Lee, Y.S.;Lee, K.H.;Weiss, A.;Lee, J.H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.133-138
    • /
    • 2002
  • The growth of Au films grown on a Si(100)-2x1 surface and Si films on a Ge(100)-2x1 substrate is studied using Positron-annihilation induced Auger Electron Spectroscopy(PAES), Electron induced Auger Electron Spectroscopy(EAES), and Low Energy Electron Diffraction(LEED). Previous work has shown that PAES is almost exclusively sensitive to the top-most atomic layer due to the trapping of positrons in an image potential well just outside the surface before annihilation. This surface specificity is exploited to profile the surface atomic concentrations during the growth of Au on Si(100) and Si on Ge(100) and EAES provides concentrations averaged over the top 3-10 atomic layers simultaneously. The difference in the probe-depth makes us possible to use PAES and EAES in a complementary fashion to estimate the surface and near surface concentration profiles. The results show that (i) the intermixing of Au and Si atoms occurs during the room temperature deposition, (ii) the segregated Ge layer is observed onto the Si layers deposited at 300k. In addition, the prior adsorption of hydrogen prevents the segregation of Ge on top of the deposited Si and that the hydrogen adsorption is useful in growing a thermally stable structure.

  • PDF