• Title/Summary/Keyword: Si particle size

Search Result 623, Processing Time 0.031 seconds

Fabrication and Characteristics of SiCp/AC8A Composites by Pressureless Metal Infiltration Process (무가압함침법에 의한 SiCp/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • The SiCp/AC8A composites were fabricated by the pressureless metal infiltration process successfully. The effect of additional Mg, which were mixed with SiC particles to promote interfacial wetting between the reinforcement and matrix alloy, and particle size on the mechanical properties was investigated. By increasing the additional Mg content the hardness of SiCp/AC8A composites was increased due to the hard reaction products, but the bending strength was decreased by the excess reaction of Mg and high porosity level when the additional Mg content is over 7%. The Hardness and bending strength was increased by decreasing the size of SiC particle.

  • PDF

Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics (탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향)

  • 신형섭;전천일랑;서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1869-1876
    • /
    • 1992
  • The effect of particle property on FOD(foreign object damage) and strength degradation in structural ceramics especially, silicon carbide was investigated by accelerating a spherical particle having different material and different size. The damage induced showed significant differences in their patterns with increase of impact velocity. Also percussion cone was formed at the back part of specimen when particle size became large and its impact velocity exceeded a critical value. The extent of ring cracks was linearly related to particle size, however the impact of steel particle produced larger ring cracks than that of SiC particle. Increasing impact velocity the residual strength showed different degradation behaviors according to particle and its size. In the region the impact site represents nearly elastic deformation behavior, the residual strength was dependent upon the depth of cone crack regardless of particle size. However in elastic- plastic deformation region, the radial cracks led to rapid drop in residual strength.

Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process (가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화)

  • Nam, Ki-Young;Jin, Hyeong-Ho;Kim, Yong-Jin;Yoon, Seog-Young;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • Kim, M.S.;Yoshimoto, Mamoru;Koinuma, Hideomi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles by the He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient gas pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • ;Mamoru Yoshimoto;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure (상압에서 열분해법을 이용한 실리콘 입자 제조)

  • Woo, Dae-Kwang;Nam, Kyung-Tag;Kim, Young-Gil;Kim, Kwang-Su;Kang, Yun-Ho;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2 (N형 FeSi2의 열전특성에 미치는 입자크기 및 성형압력의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4835-4841
    • /
    • 2015
  • The effect of particle size and compaction pressure on the thermoelectric properties of n-type $FeSi_2$ was investigated. The starting powders with various particle size were pressed into a compact (compaction pressure; $70{\sim}220kg/cm^2$). The compact specimens were sintered at 1473 K for 7 h and annealed at 1103 K for 100 h under Ar atmosphere to transform to the semiconducting ${\beta}$-phase. The microstructure and phases of the specimens were observed by SEM, XRD and EDS. The electrical conductivity and Seebeck coefficient were measured simultaneously for the same specimen at r.t.~1023 K in Ar atmosphere. The electrical conductivity increased with decreasing particle size and hence the increases of relative density of the sintered body and the amount of residual metallic phase ${\varepsilon}$-FeSi due to a increase of the electrical conductivity. The Seebeck coefficient exhibited the maximum value at about 700~800 K and decreased with decreasing particle size. This must be due to a increase of residual metallic phase ${\varepsilon}$-FeSi. On the other hand, the change of compaction pressure appeared to have little effect on the thermoelectric properties. Consequently, the power factor would be affected more by particle size than compaction pressure.

Fabrication Process and Mechanical Properties of High Volume Fraction SiC Particle Preform (고부피분율 SiC분말 예비성형체의 제조공정과 기계적특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The fabrication process and mechanical properties of SiC particle prefrrms with high volume fraction ranged 50∼71% were investigated to make metal matrix composites for possible applications as heat sinks in electronic packares. The SiC particle preforms with 50∼71vol% of reinforcement were fabricated by a new modified process named ball milling and pressing method. The SiC particle performs were fabricated by ball milling of SiC particles with single sized of 48${\mu}$m in diameter or two different size of 8${\mu}$m and 48${\mu}$min diameter, with collodal SiO2 as inorgnic binder in distilled water, and the mixed slurries were cold pressed for consolidation into final prefom. The compressive strengths og calcined SiC particle prefoms increased from 20MPa to 155MPa with increasing the content of inorganis binder, temperature and time for calcination. The increase of compressive strength of SiC particle bridge the interfaces of two neighboring SiC particles.

  • PDF

Effects of Particle Size and Binder Phase Addition on Formability of Li-Si Alloy Powder for Thermal Battery Anode (열전지 음극재용 Li-Si 원료의 성형성에 미치는 입자크기와 바인더첨가 효과)

  • Ryu, Sung-Soo;Kim, Hui-Sik;Kim, Seongwon;Kim, Hyung-Tae;Cheong, Hae-Won;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.331-337
    • /
    • 2014
  • The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.