• Title/Summary/Keyword: Si optical area sensor

Search Result 8, Processing Time 0.022 seconds

Design and Fabrication of an NIR Grism Si Optical Area Sensor Spectrometer with In-band Reference Wavelength (대역 내 기준 파장을 갖는 근적외선 그리즘 실리콘 광 면 센서 분광기 설계 및 제작)

  • Song, Jae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • An NIR grism Si optical area sensor spectrometer with in-band reference wavelength is designed and fabricated. It is composed of a transmission type diffraction grating (spatial density 300 line/mm), a rectangular N-BK7 prism (apex angle 30 degree), NIR filter(cutoff wavelength 720 nm), an imaging convex lens(focal length 50 mm F1.8) and an IR modified DSLR camera (Canon EOS40D) of Si optical area sensor ($3,888{\times}2,592$ pixels, pixel size $5.710{\mu}m$). "In-band reference wavelength function" is implemented using non-dispersive 0th diffraction order optical beam. The NIR grism spectrometer is tested in a laboratory using a halogen lamp and a Neon lamp. And the spectrometer is used in an astronomy field for obtaining the planet Jupiter NIR spectrum. In-band reference wavelength i.e. un-deviation wavelength is 846 nm, an wavelength resolution is 0.3027 nm/pixel, an wavelength resolving power is 2,794 and an wavelength range is 650~1,000 nm.

Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors (집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

A study on the pressure characteristics of FFPI pressure sensor using the Si diaphragm (Si 다이아프램은 사용한 FFPI압력센서의 압력특성에 환한 연구)

  • 정주영;김경찬;박재희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.463-467
    • /
    • 2001
  • In this study, we developed a FFPI (fiber optic Fabry-Perot interferometer) pressure sensor using the Si diaphragm which measures pressure in vivo. The diaphragm and its supporting structure were etched in KOH solution and were fabricated with micromachining technology. For the configuration of the sensor, the length of the cavity of the Fabry-Perot etalon is 15 mm and one end of the etalon was bonded to a Si diaphragm with 507m thickness. When the area of the Si diaphragm was 2$\times$2 mm2 (cavity length 15 mm), it turns out that the pressure sensitivity was about 1.5 degree/kPa. The pressure sensor developed in this study showed that the phase change was linearly proportional to the increasing pressure in the range of 80 kPa.

  • PDF

A Touch-sensitive Display with Embedded Hydrogenated Amorphous-silicon Photodetector Arrays (비정질 실리콘 광센서를 이용한 터치 감응 디스플레이 설계 및 제작)

  • Lee, Soo-Yeon;Park, Hyun-Sang;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2219-2222
    • /
    • 2009
  • A new touch-sensitive hydrogenated amorphous silicon(a-Si:H) display with embedded optical sensor arrays is presented. The touch-sensitive panel operation was successfully demonstrated on a prototype of 16-in. active-matrix liquid crystal display (AMLCD). The proposed system provides the finger touched point without the real-time image processing of information of the captured images. Due to the simple architecture of the system, we expect the introduction of large-area touch-sensitive display panels.

Review on Sensor Technology to Detect Toxic Gases (독성가스 감지용 센서 기술 동향 리뷰)

  • Lee, Janghyeon;Lim, Si-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2015
  • The excess use and generation of various toxic gases from many industrial complexes and plant facilities have increased the possibility of leakage or explosion accidents, which can cause fatal damage to human beings in the wide range of neighboring area. To prevent the exposure to the fatal toxic gases, it is very important to monitor the leakage of toxic gases using gas sensors in real time. Various types of gas sensors, which can be classified as semiconductor, electrochemical, optical, and catalytic combustion types according to the operating principles, have been developed. In this review, the operation principles of gas sensors are explained and the performance of those sensors is compared. The state-of-the-art gas sensor technologies developed by research institutes or companies are reviewed also.

Development of the pulse analyzing system using FBG (FBG를 이용한 맥진 시스템 개발)

  • Jeon, Young-Ju;Lee, Jeon;Ryu, Hyun-Hee;Lee, Jae-Hoon;Lee, Si-Woo;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • This work reports the pulse diagnosis system using FBG sensors which can display pulse signals detected while oriental medical doctors are conducting pulse diagnoses and simultaneously pressing the sensors by three fingers. Each optical fiber has five FBG sensing units fabricated in 2 mm width and 2 mm inter-sensor spacing. Three optical fibers with the FBG units in the parallel line configuration are then placed on each finger-pressing region and thus overall 9 fibers are used for the pulse measurements on the so-called "chon", "gwan", and "ch대k". A fixture holding the optical fiber arrays is able to adjust the height of the FBG sensing units while placing the fibers on the wrist. The pulse signals detected by the FBG sensors from chon, kwan, and chuk have been analyzed using 4 channel spectrum analyzer connected to the optical fibers. The measured pulse signals exhibit variations due to the nonuniform pressure distributions applied. resulting in the differences in the detected pulse signals between fiber lines. However. this work is the first step towards objective and quantitative analyses of the pulse diagnosis in oriental medicine which has traditionally been performed on subjective basis. Future works will be devoted to improving sensor stability, developing the way applying pressure and algorithms reporting the objective classification of the pulse status from systemic measurements using the sensors instead of relying on the clinicians' diagnoses subjectively performed. A successful pulse diagnosis system emerging in the future is expected to contribute to education as well as promoting pulse diagnosis in oriental medicine to the scientific research area.

  • PDF