• 제목/요약/키워드: Si optical area sensor

검색결과 8건 처리시간 0.029초

대역 내 기준 파장을 갖는 근적외선 그리즘 실리콘 광 면 센서 분광기 설계 및 제작 (Design and Fabrication of an NIR Grism Si Optical Area Sensor Spectrometer with In-band Reference Wavelength)

  • 송재원
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2017
  • An NIR grism Si optical area sensor spectrometer with in-band reference wavelength is designed and fabricated. It is composed of a transmission type diffraction grating (spatial density 300 line/mm), a rectangular N-BK7 prism (apex angle 30 degree), NIR filter(cutoff wavelength 720 nm), an imaging convex lens(focal length 50 mm F1.8) and an IR modified DSLR camera (Canon EOS40D) of Si optical area sensor ($3,888{\times}2,592$ pixels, pixel size $5.710{\mu}m$). "In-band reference wavelength function" is implemented using non-dispersive 0th diffraction order optical beam. The NIR grism spectrometer is tested in a laboratory using a halogen lamp and a Neon lamp. And the spectrometer is used in an astronomy field for obtaining the planet Jupiter NIR spectrum. In-band reference wavelength i.e. un-deviation wavelength is 846 nm, an wavelength resolution is 0.3027 nm/pixel, an wavelength resolving power is 2,794 and an wavelength range is 650~1,000 nm.

집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석 (Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors)

  • 장재식;정홍식
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성 (Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Si 다이아프램은 사용한 FFPI압력센서의 압력특성에 환한 연구 (A study on the pressure characteristics of FFPI pressure sensor using the Si diaphragm)

  • 정주영;김경찬;박재희
    • 한국광학회지
    • /
    • 제12권6호
    • /
    • pp.463-467
    • /
    • 2001
  • 본 연구에서는 생체 내부의 압력을 측정하기 위하여 Si를 얇은 막으로 사용한 FFPI(fiber optic Fabry-Perot interferometer) 압력센서를 개발하였다. 얇은 Si 막과 Si 막의 비등방 지지 구조물은 수산화 칼륨 수용액에서의 식각과 미세가공 기술로 제작하였다. 센서의 구조는 두 반사막 사이의 길이가 15mm이며 수직 절단된 센서의 끝단은 두게 50$\mu\textrm{m}$의 얇은 Si막에 연결하였다. 얇은 Si막의 면적이 2$\times$2mm$^2$ 압력센서의 경우 압력감도는 -1.5 degree/kPa였다. 본 연구에서 제작한 압력센서는 80kpa의 압력 범위 내에서 압력 증가에 따라 비교적 선형적인 위상변화를 보였다.

  • PDF

비정질 실리콘 광센서를 이용한 터치 감응 디스플레이 설계 및 제작 (A Touch-sensitive Display with Embedded Hydrogenated Amorphous-silicon Photodetector Arrays)

  • 이수연;박현상;한민구
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2219-2222
    • /
    • 2009
  • A new touch-sensitive hydrogenated amorphous silicon(a-Si:H) display with embedded optical sensor arrays is presented. The touch-sensitive panel operation was successfully demonstrated on a prototype of 16-in. active-matrix liquid crystal display (AMLCD). The proposed system provides the finger touched point without the real-time image processing of information of the captured images. Due to the simple architecture of the system, we expect the introduction of large-area touch-sensitive display panels.

독성가스 감지용 센서 기술 동향 리뷰 (Review on Sensor Technology to Detect Toxic Gases)

  • 이장현;임시형
    • 센서학회지
    • /
    • 제24권5호
    • /
    • pp.311-318
    • /
    • 2015
  • The excess use and generation of various toxic gases from many industrial complexes and plant facilities have increased the possibility of leakage or explosion accidents, which can cause fatal damage to human beings in the wide range of neighboring area. To prevent the exposure to the fatal toxic gases, it is very important to monitor the leakage of toxic gases using gas sensors in real time. Various types of gas sensors, which can be classified as semiconductor, electrochemical, optical, and catalytic combustion types according to the operating principles, have been developed. In this review, the operation principles of gas sensors are explained and the performance of those sensors is compared. The state-of-the-art gas sensor technologies developed by research institutes or companies are reviewed also.

FBG를 이용한 맥진 시스템 개발 (Development of the pulse analyzing system using FBG)

  • 전영주;이전;유현희;이재훈;이시우;김종열
    • 한국한의학연구원논문집
    • /
    • 제13권3호
    • /
    • pp.105-110
    • /
    • 2007
  • This work reports the pulse diagnosis system using FBG sensors which can display pulse signals detected while oriental medical doctors are conducting pulse diagnoses and simultaneously pressing the sensors by three fingers. Each optical fiber has five FBG sensing units fabricated in 2 mm width and 2 mm inter-sensor spacing. Three optical fibers with the FBG units in the parallel line configuration are then placed on each finger-pressing region and thus overall 9 fibers are used for the pulse measurements on the so-called "chon", "gwan", and "ch대k". A fixture holding the optical fiber arrays is able to adjust the height of the FBG sensing units while placing the fibers on the wrist. The pulse signals detected by the FBG sensors from chon, kwan, and chuk have been analyzed using 4 channel spectrum analyzer connected to the optical fibers. The measured pulse signals exhibit variations due to the nonuniform pressure distributions applied. resulting in the differences in the detected pulse signals between fiber lines. However. this work is the first step towards objective and quantitative analyses of the pulse diagnosis in oriental medicine which has traditionally been performed on subjective basis. Future works will be devoted to improving sensor stability, developing the way applying pressure and algorithms reporting the objective classification of the pulse status from systemic measurements using the sensors instead of relying on the clinicians' diagnoses subjectively performed. A successful pulse diagnosis system emerging in the future is expected to contribute to education as well as promoting pulse diagnosis in oriental medicine to the scientific research area.

  • PDF