• 제목/요약/키워드: Si anode

검색결과 230건 처리시간 0.023초

리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더 (Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries)

  • 송다노;이승현;김규만;유명현;박원호;이용민
    • 공업화학
    • /
    • 제26권6호
    • /
    • pp.674-680
    • /
    • 2015
  • 리튬이차전지 실리콘 전극에 활용하기 위해, 유기용매에 용해성이 있는 폴리이미드(Polyimide, PI) 고분자 바인더를 두 단계 반응을 이용해 합성하였다. 두 가지 단량체(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride (BCDA)와 4,4-oxydianiline (ODA))의 개환 반응 및 축합 반응을 통해 PI 고분자 바인더를 합성하였다. 합성된 PI 고분자 바인더를 이용해 실리콘(silicon, Si) 음극 전극을 제조하였다. 또한 비교군으로써, Polyvinylidene Fluoride (PVDF)을 고분자 바인더로 사용하는 동일 조성을 가진 실리콘 전극을 제조하였다. PI 바인더를 사용한 Si 전극($2167mAh\;g^{-1}$)의 초기 쿨롱 효율은 기존 PVDF 바인더 조성의 Si 전극($1,740mAh\;g^{-1}$)과 유사했지만, 방전용량은 크게 개선되었다. 특히 수명 특성에서는 PI 바인더를 사용한 Si 전극이 우수한 특성을 나타내었는데, 이는 PI 바인더를 사용한 Si 전극접착력($0.217kN\;m^{-1}$)의 전극 접착력이 PVDF를 사용한 Si 전극($0.185kN\;m^{-1}$)보다 높아, 실리콘 부피팽창에 의한 전극 구조 열화가 적절히 제어되었기 때문이라고 판단된다. Si 전극 내의 접착력은 surface and interfacial cutting analysis system (SAICAS) 장비를 통해 검증하였다.

실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계 (Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode)

  • 임은영;이은솔;이진홍
    • 공업화학
    • /
    • 제35권4호
    • /
    • pp.309-315
    • /
    • 2024
  • 실리콘/탄소(SiC) 복합체는 실리콘의 높은 이론 용량과 탄소 소재의 높은 전기 전도성을 동시에 만족할 수 있어 실리콘 기반 음극의 상용화를 위한 새로운 음극 소재로서 주목받고 있다. 그러나 SiC 활물질의 반복적인 부피 변화에 따른 지속적인 전해질 소모와 용량 감소는 여전히 해결되어야 하는 문제로 여겨진다. 이러한 문제를 해결하기 위해 본 연구에서는 열적 가교 반응을 통해 네트워크 구조를 형성하는 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI) 기반의 수분산 폴리우레탄 바인더(HPUD)를 제안한다. 가교된 HPUD (CHPU)는 SiC 음극의 건조 공정 중 간단한 열처리를 통해서 가교제인 triglycidyl isocyanurate (TGIC)의 epoxy 고리 개환 반응을 활용하여 제조되었다. 뛰어난 기계적 특성 및 접착 특성을 가지는 CHPU 바인더를 사용한 SiC 음극은 우수한 율속 및 장기 수명 특성을 나타낼 뿐만 아니라, SiC 음극의 부피 팽창 또한 효과적으로 완화시키는 것으로 확인되었다. 본 연구 결과는 가교 구조를 가지는 환경친화적인 바인더가 다양한 실리콘 기반 음극에 활용될 수 있음을 시사한다.

리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성 (Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery)

  • 김은비;이종대
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.32-38
    • /
    • 2023
  • 본 연구에서는 리튬 이온 배터리 용 음극활물질인 실리콘의 사이클 안정성 및 율속 특성을 개선하기 위해 도파민이 코팅된 실리콘/실리콘카바이드/카본(Si/SiC/C) 복합소재의 전기화학적 특성을 조사하였다. Stöber 법에 CTAB을 추가하여 CTAB/SiO2를 합성한 후 열 흡수제로써 NaCl을 첨가한 마그네슘 열 환원법을 통해 Si/SiC 복합소재를 제조하였으며, 도파민의 중합반응을 통해 탄소코팅을 하여 Si/SiC/C 음극소재를 합성하였다. 제조된 Si/SiC/C 음극소재의 물리적 특성 분석을 위해 SEM, TEM, XRD와 BET를 사용하였으며, 1 M LiPF6 (EC : DEC = 1 : 1 vol%) 전해액에서 리튬 이온 배터리의 사이클 안정성, 율속 특성, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 1-Si/SiC는 100사이클, 0.1 C에서 633 mAh/g의 방전용량을 나타냈으며, 도파민이 코팅된 1-Si/SiC/C는 877 mAh/g으로 사이클 안정성이 향상된 것을 확인할 수 있었다. 또한 5C에서 576 mAh/g의 높은 용량과 0.1 C/0.1 C 일 때 99.9%의 용량 회복 성능을 나타내었다.

입자 크기 및 탄소 코팅에 따른 리튬이온배터리용 SiOx 음극활물질의 전기화학적 특성 (Electrochemical Properties of SiOx Anode for Lithium-Ion Batteries According to Particle Size and Carbon Coating)

  • 박안나;나병기
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.19-26
    • /
    • 2024
  • 본 연구에서는 리튬이온배터리용 고용량 음극활물질인 실리콘의 부피팽창을 완화하고 사이클 안정성을 향상시키기 위해 SiOx@C 복합소재를 제조하였다. Stӧber 법을 통해 입자 크기가 각각 100, 200, 500 nm인 SiO2를 합성하였고, 마그네슘 열환원을 통해 SiOx (0≤x≤2)를 제조하였다. 그 후 SiOx에 PVC를 탄화시켜 SiOx와 C의 비율에 따라 SiOx@C 음극활물질을 합성하였다. 제조된 SiOx와 SiOx@C 음극활물질의 물리적 특성은 XRD, SEM, TGA, 라만분광법, XPS, BET를 사용해 분석하였다. 그리고 사이클 테스트, 율속특성, CV, EIS 테스트를 통해 전기화학적 특성을 조사하였다. 입자 크기가 가장 작은 100 nm SiOx에 SiOx:C=70:30으로 탄소를 코팅하여 제조된 SiOx@C-7030은 100 사이클에서 1055 mAh/g의 방전용량과 81.9%의 용량을 유지하여 가장 우수한 전기화학적 특성을 보여주었다. 이는 SiOx 음극활물질 입자의 크기를 줄이고, 탄소를 코팅하여 사이클 안정성을 향상시킬 수 있다는 것을 의미한다.

Comparative Study on Performances of Composite Anodes of SiO, Si and Graphite for Lithium Rechargeable Batteries

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Lee, Duck-Jun;Lee, Jung-Hoon;Jin, Bong-Soo;Moon, Seong-In;Park, Cheol-Wan;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1257-1261
    • /
    • 2010
  • The electrochemical performances of anode composites comprising elemental silicon (Si), silicon monoxide (SiO), and graphite (C) were investigated. The composite devoid of elemental silicon (SiO:C = 1:1) and its carbon coated composite showed reduced capacity degradation with measured values of 606 and 584 mAh/g at the fiftieth cycle. The capacity retention nature when the composites were cycled followed the order of Si:SiO:C = 3:1:4 < Si:SiO:C = 2:2:4 < SiO:C = 1:1 < SiO:C = 1:1 (carbon coated). A comparison of the capacity retention properties for the composites in terms of the silicon content showed that a reduced silicon content increased the stability of the composite electrodes. Even though the carbon-coated composite delivered low capacity during cycling compared to the other composites, its low capacity degradation made the anode a better choice for lithium ion batteries.

실리콘 함량에 따른 리튬이온전지용 실리콘/탄소 음극소재의 전기화학적 특성 (Electrochmical Performance of Silicon/Carbon Anode Materials for Li-ion Batteries by Silicon Content)

  • 최연지;김성훈;안욱
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.338-344
    • /
    • 2022
  • 리튬이온전지의 음극소재 연구에서 실리콘 기반의 음극 활물질 개발이 필수적이며, 탄소기반의 실리콘-탄소 복합소재의 음극 적용연구가 활발히 진행되고 있다. 다른 한편으로 반도체와 태양광전지 산업에서 폐기물로 버려지는 실리콘 자원이 증가하여 환경적 문제를 일으키기도 한다. 본 연구에서는 리튬이온전지 음극소재로서 재활용된 실리콘을 이용하여 탄소와 복합화를 이루었으며, 실리콘 음극소재의 높은 용량 유지 특성 및 사이클 안정성 향상을 위하여 재활용된 실리콘과 피치의 함량을 조절하여 복합화의 최적화 조건을 확립하였다. 실리콘 : 피치의 질량비를 1 : 1 과 2 : 1을 가진 복합체를 간단한 자가조립 방법으로 복합화 하였으며, 석유계 피치로 코팅하여 제조된 음극소재의 전기화학적 특성을 비교 조사하는 연구를 수행하였다. 제조된 실리콘-탄소 복합소재는 충·방전 동안 발생되는 실리콘의 구조적 파괴를 방지하는 방법으로 우수한 초기용량과 사이클 안정성을 달성하였으며, 재활용 실리콘의 전극소재로서의 가능성을 확인하였다.

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성 (Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process)

  • 서덕호;김향연;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.341-348
    • /
    • 2019
  • This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성 (Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives)

  • 박지용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.303-308
    • /
    • 2018
  • 본 연구에서는 리튬이차전지 음극활물질인 Silicon/Carbon (Si/C) 복합소재를 제조하여 바인더 및 첨가제가 전지성능에 미치는 영향을 조사하였다. Si/C 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. Si/C 음극소재는 충 방전, 순환전압전류, 임피던스 테스트를 통해 전기화학적 성능을 분석하였다. PAA 바인더를 이용한 Si/C 전지의 용량은 1,899 mAh/g으로 다른 바인더를 사용한 합성물보다 우수하였으며, 40 사이클 동안 92%에 달하는 높은 용량 보존율을 나타내었다. 또한, VC 첨가제를 사용한 전지의 경우 3,049 mAh/g의 높은 초기용량을 나타내며, 실리콘 표면에 보호막을 형성해 초기 비가역용량을 감소시켜줌을 알 수 있었다.