• Title/Summary/Keyword: Si Particle

Search Result 1,054, Processing Time 0.023 seconds

Synthesis of FeAPSO-34 Materials and Their Catalytic Performance on Methanol Conversion (FeAPSO-34재료의 합성과 메탄올 전환에 놓인 촉매적 성능)

  • Eom, Myeong-Heon;Gang, Mi-Suk
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.798-803
    • /
    • 1999
  • This study has been focused on the influence of Fe(III) incorporation into framework of SAPO-34(FeAPSO-34s;/su/Fe = 40,20 and 5) on the catalytic performance of methanol conversion. By rapid crystallization method, the XRD,SEM,ICP,TG-DTA, and BET sufrace areas. With an increase in the Fe content incorporated to the framework, the crystallinity identified from the intensity of XRD peaks slightly decreased and the particle size observed from SEM photographs decreased also. On the other hand, the acid sites in crystal decreased kin the Fe-incorporated samples, and the selectivity to ethylene for FeAPSO-34 catalyst on methanol conversion was enhanced compared with the nonmetal incorporated(SAPO-34)

  • PDF

Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model (글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석)

  • Lee, Ho-Jun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

Alternative Breaching Methods of the TRISO Fuels

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.92-106
    • /
    • 2005
  • The head-end processes of spent TRISO fuel have been reviewed to understand the current status and the limitations of the reported processes. The main concerns in the TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The crush-bum scheme which was considered in the early stages of the development has been replaced by the crush-leach or $CO_2$ burning and the succeeding CO decomposition process because of a sequestration problem of $CO_2$ containing $^{14}C$. However there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical and pyrochemical concepts to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphor Thick Films Prepared by Screen Printing Method (스크린 프린팅법을 이용한 ZnGa2O4 형광체 후막의 발광특성)

  • Lee Seung-Kyu;Park Yong-Seo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.749-753
    • /
    • 2006
  • The $ZnGa_2O_4$ phosphor thick films were fabricated using a screen printing method on Si(100) substrates at various sintering temperatures. The XRD patterns show that the $ZnGa_2O_4$ thick films have a (311) main peak and a spinel structure with increasing sintering temperatures. The particle sizes of $ZnGa_2O_4$ phosphor were about 100 nm and the thickness of $ZnGa_2O_4$ thick film was $10{\mu}m$. The CL and PL properties of $ZnGa_2O_4$ showed main peak of 420nm and maximum intensity at the sintering temperature of $900^{\circ}C$. These results indicate that $ZnGa_2O_4$ phosphor thick films hold promise for displays such as plasma display panel and field emission display.

A Study on the Photon Energy Characteristics of ZnO Thin Film According to Coating Thickness (ZnO 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • Lee, Jung-Il;Seo, Jang-Soo;Jung, Sung-Gyo;Kim, Byung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.75-81
    • /
    • 2003
  • This study evaporates ZnO layer thickness differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1{\varepsilon}_2)$ has larger peak values as it’s thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Investigation of Photoluminescence and Annealing Effect of PS Layers

  • Han, Chang-Suk;Park, Kyoung-Woo;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 2018
  • N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm's whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from n-type PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.

Study on the Improvement of Light Transmittance of Polyester Film (폴리에스터 필름의 광투과도 향상에 대한 연구)

  • Kim, Si-Min;Park, Soo-Young
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.662-667
    • /
    • 2012
  • Poly(ethylene terephthalate) (PET) base films with high light transmittance have been used for the substrate of various functional films in the flat panel display. The effects of the reflective index of coated films, the roughness of the film surface and the content of inorganic silica particles on the light transmittance were studied in this article. Light transmittance was increased by coating a water soluble resin with a low reflective index at an optimum thickness. The roughness of the film did not affect light transmittance when the Ra of the film surface was less than a quarter of the wavelength of incident light. Inorganic silica particles decreased light transmittance due to their absorbance and scattering of the incident light.

Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

  • Kim, Jongmin;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3362-3366
    • /
    • 2013
  • A simple and quick separation technique for selenite in natural water was developed using $TiO_2$@$SiO_2/Fe_3O_4$ nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the $TiO_2$ shell. The synthesized nanoparticles were used to separate selenite ($Se^{4+}$) in the presence of $Se^{6+}$ or selenium anions for the photocatalytic reduction to $Se^0$ atom on the $TiO_2$ shell, followed by magnetic separation using $Fe_3O_4$ nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

The Influence of Mechanical Milling on the Structure and Magnetic Properties of Sm-Fe-N Powder Produced by the Reduction-Diffusion Process

  • Lee, Jung-Goo;Kang, Seok-Won;Si, Ping-Zhan;Choi, Chul-Jin
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.104-107
    • /
    • 2011
  • In the present study, we systematically investigated the effect of mechanical milling on the magnetic properties of $Sm_2Fe_{17}N_x$ powders produced by the reduction-diffusion process. The Sm-Fe powders obtained by the reduction-diffusion process were composed of an $Sm_2Fe_{17}N_x$ single phase. After nitrogenation, the coercivity and saturation magnetization of the powders were 0.48 kOe and 13.32 kG, respectively. The particle size largely decreased down to less than $2\;{\mu}m$ in diameter after ball milling for 30 hours. However, there is no evidence that the $Sm_2Fe_{17}N_x$ was decomposed to Sm-N and ${\alpha}$-Fe even after ball milling for 30 hours. The coercivity was significantly improved up to 8.82 kOe after milling for 60 hours. However, the magnetization decreased linearly with the ball milling time.

Effects of Center Segregation on Weld Cold Cracking Susceptibility (용접 저온균열 감수성에 미치는 중심 편석의 영향)

  • 안영호;이종봉;장래웅;소문섭
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 1994
  • Correlation between microstructural features and segregation of elements (Si, Mn, P and S) near the mid of thickness in the base metal and the synthetic HAZ was investigated. Furthermore, the relationship between the degree of center segregation and weld cold cracking susceptibility in the thickness direction was also conducted by evaluating the effect of P concentration on the critical applied stress. The results obtained are as follows: 1) Pearlite band, containing the MnS type inclusion and a locally transformed structure with a higher hardness, was observed in the center segregation region. 2) By the weld thermal cycle, center segregation region was transformed to the white band which had a higher hardness than that of base metal due to a greater hardenability of concentrated Mn, P etc.. 3) Weld cold cracking susceptibility in the thickness direction was mainly dependent on the concentration of impurity elements rather than on the number of the segregated particles near the mid of thickness. 4) During welding, the higher concentrated region was easily changed into white band. Therefore, it could be predicted that the initiation and propagation of a cold crack would be promoted by increasing the restraint stress and hydrogen content.

  • PDF