• Title/Summary/Keyword: Si Particle

Search Result 1,051, Processing Time 0.032 seconds

The Measurement of National Standard ${\beta}$-Rays Energy Spectrum (기준 베타선장의 에너지 스펙트럼 측정)

  • Kim, Chul-Hang;Yi, Chul-Young;Kim, Hyun-Moon;Hah, Suck-Ho;Jeon, Gook-Jin
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.285-291
    • /
    • 2012
  • In the present study, we measured the pure beta particle energy spectra of $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ radionuclide sources. We confirmed the residual maximum energies of KRISS sources meet the requirement of ISO 6980 and calculated mass collision stopping power ratio, which is essential for absolute measurement of absorbed dose from the reference ${\beta}$-rays. The residual maximum energies of KRISS $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ sources are 0.14, 0.57 and 0.93 MeV, respectively and the mass collision stopping power ratios are 1.123, 1.120 and 1.109, respectively.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

입자침전법을 이용한 광도전체 필름의 X선 반응 특성에 관한 연구

  • Choe, Chi-Won;Gang, Sang-Sik;Jo, Seong-Ho;Gwon, Cheol;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.176-176
    • /
    • 2007
  • Flat-panel direct conversion detectors used in compound substance of semiconductor are being studied for digital x-ray imaging. Recently, such detectors are deposited by physical vapor deposition(PVD) generally. But, most of materials (HgI2, PbI2, TlBr, PbO) deposited by PVD have shown difficult fabrication and instability for large area x-ray imaging. Consequently, in this paper, we propose applicable potentialities for screen printing method that is coated on a substrate easily. It is compared to electrical properties among semiconductors such as $HgI_2$, $PbI_2$, PbO, HgBrI, InI, and $TlPbI_3$ under investigation for direct conversion detectors. Each film detector consists of an ~25 to $35\;{\mu}m$ thick layer of semiconductor and was coated onto the substrate. Substrates of $2cm{\times}2cm$ have been used to evaluate performance of semiconductor radiation detectors. Dark current, sensitivity and physics properties were measured. Leakage current of $HgI_2$ as low as $9pA/mm^2$ at the operation bias voltage of ${\sim}1V/{\mu}m$ was observed. Such a value is not better than PVD process, but it is easy to be fabricated in high quality for large area x-ray Imaging. Our future efforts will concentrate on optimization of growth of film thickness that is coated onto a-Si TFT array.

  • PDF

Effects of Precursor pH on Synthesizing Behavior and Morphology of Mullite in Stoichiometric Composition (화학양론 조성의 뮬라이트 합성거동과 입자형상에 미치는 전구체 pH의 영향)

  • Lee, Jae-Ean;Kim, Jae-Won;Jung, Yeon-Gil;Chang, Jung-Chel;Jo, Chang-yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.573-579
    • /
    • 2002
  • Stoichiometric mullite ($3Al_2$$O_3$. $2SiO_2$) precursor sol has been prepared by sol-gel method. The effects of the precursor pH and sintering temperature on the synthesizing behavior and morphology of mullite have been studied. Mullite precursor sol was prepared by dissolution of aluminum nitrate enneahydrate (Al($NO_3$)$_3$.9H$_2O) into the mixture of silica sol. Precursor pH of the sols was controlled to acidic condition ($PH\leq$ 1~1.5) and to basic condition ($pH\geq$8.5~9). The synthesized aluminosilicate sols were formed under 20 MPa pressure after drying at $150^{\circ}C$ for 24 hours, and then sintered for 3hours in the temperature range of $1100~1600^{\circ}C$. From TGA/DTA analysis, total weight loss in the aluminosilicate gel of the acidic sample was (equation omitted) 56% and that of the basic sample was (equation omitted) 85%, indicating that the synthesizing temperature of mullite phase for acidic and basic samples was above $1200^{\circ}C$ and $1300^{\circ}C$, respectively. The morphologies of the synthesized mullite were fine and needle-like (or rod-like) for acidic sample, and granular for basic sample that has been sintered above $1300^{\circ}C$. It was found that the morphology of mullite particle was predominantly governed by precursor pH and sintering temperature.

Preparation and C-V characteristics of $Y_2O_3-StabilzedZrO_2$ Thin Films by PE MO CVD (플라즈마 화학 증착법에 의한 $Y_2O_3-StabilzedZrO_2$박막의 제조와 Capacitance-Voltage특성)

  • Choe, Hu-Rak;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.510-515
    • /
    • 1994
  • Yttria-stabilized zirconia(YSZ) films were prepared onto p-type (100) silicon wafer by a plasma-enhanced metallorganic chemical vapor deposition(PE MO CVD) processing involving the application of vapor mixture of tri(2.2.6.6-tetramethyl-3, 5-heptanate) yttrium$[Y(DPM)_3]$, zirconiumtriflouracethyla cetonate$(Zr(tfacac)_4$ and oxygen gas. The x-ray diffraction(XRD) and fourier transform infrared spectra(FT1R) results showed that the deposited YSZ films had a single cubic phase. $Y_2O_3$ content of YSZ film was analyzed by PIXE(partic1e induced x-ray emission). The experimental results by PIXE revealed that 12.lmol%, 20.4mol% and 31.6mol% $Y_2O_3$ could be obtained as the $Y(DPM)_3$ bubbling temperature varied at $160^{\circ}C, 165^{\circ}C$ and $170^{\circ}C$ respectively. The increase of $Y(DPM)_3$ bubbling temperature caused shifting flat band voltage to have a negative value.

  • PDF

Effect of manufacturing and dispersion of zinc crystalline glaze on crystal formation (아연 결정유약의 제조 및 분산이 결정생성에 미치는 영향)

  • Lee, Chiyoun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2021
  • In the ceramic industry, a drastic decrease in crystalline formation was found even among the glazes well known for their high crystalline productivity when the ceramic glaze was stored in wet conditions over a period. This study aimed to investigate the reason for decreasing willemite crystals during storage. As the starting materials ZnO, calcined ZnO and frit 3110 are selected; the composition for zinc crystalline glazes was set through a three-component system with the materials. The firing condition was used from previous studies. The study was observed how wet conditions affected the crystallization of zinc crystalline glazes from a day to 24 weeks. The results were obtained by particle size analysis, XRD, Raman spectroscopy and SEM analysis. The results indicated that ZnO is advantageous in terms of willemite crystalline development and growth; however, Zn(OH)2 cluster, formed by the reaction with water during the storage, caused the decrease in ZnO level in the glaze. The reduction of ZnO in the glaze eventually interfered the willemite development and growth.

Preparation of Monodisperse PEGDA Microparticles Using a Dispensing Needle Based Microfluidic Device (주사기 바늘 기반의 미세유체 장치를 이용한 단분산성 PEGDA 입자의 제조)

  • Jin, Si Hyung;Kim, Taewan;Oh, Dongseok;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.58-64
    • /
    • 2019
  • This study presents a novel method for preparing monodisperse polyethylene glycol diacrylate (PEGDA) microparticles in a dispensing needle based microfluidic device. The microfluidic devices are manufactured by manually assembling various off-the-shelf products without using additional equipment. In this microfluidic device, the volumetric flow rates of the dispersed phase of PEGDA solution and the continuous phase of oil are controlled to generate monodisperse PEGDA droplets. The PEGDA droplet contains photo-initiator thus it is crosslinked to microparticle by photopolymerization at the ends of the device. The particle size is easily controlled by adjusting the volume flow rate and the size of the microfluidic device. The monodispersity of the particles is calculated by a coefficient of variation of 2.57%. To demonstrate the biological applications of PEGDA particles, cells are encapsulated and observed for proliferation and viability.

A Study on the Granulometry and Chemical Composition of Psudo-Gleized Soil in Jeongdongjin Area (정동진 의사글레이층의 입도와 화학 조성에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.27-45
    • /
    • 2017
  • At the upper part of terrace deposits at Jeongdongjin area, there is a structure in which reddish brown and grayish white layers laying horizontally. Previous studies have reported the existence of these structures within the deposits and suggested the theoretical background related to the formation process. However, the analysis of physical properties and chemical composition such as particle size, classification, etc. of the materials constituting the reddish brown and grayish white layers is scarcely done. In this study, the physico - chemical properties of gray - white and reddish brown beds are investigated. The mean grain size of the particles was less than $4{\varphi}$ in both layers and the reddish brown layer was more coarse. The results shows that the sorting of the grayish white layer is better. The chemical composition of both layers shows that the average concentration of $SiO_2$, $Al_2O_3$ and $K_2O$ of the grayish white layer was higher than those of the reddish brown layer. The concentration of $Fe_2O_3$ of reddish brown lyaer was 3 times higher than those of the grayish white layer. The degree of chemical weathering (CIA) is 90 or so in both the reddish brown and grayish white layers, indicating a significant level of chemical weathering. In conclusion, reddish brown layers had been formed by the processes related to the migration of iron and the migration of water that induced aggregation after the formation of sediments (psudo-gleization). In this study area, a vertical layer of grayish white which cuts off horizontal reddish brown and grayish white color was found. The vertical layer or wedge similar to a ice-wedge or columnar structure that in a cold environment, and there is a difference in shape and size. The vertical layer appears to have occurred three or more cycles. The vertical layers begin to form at a certain height within the outcrop and descend downwards, which of course is difficult to see as directing certain times.

Optimization of medium components and incubation time for the production of Paecilomyces tenuipes mycelia in submerged culture

  • Ha, Si Young;Jung, Ji Young;Lee, Dong Hwan;Yang, Jae-Kyung
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The choice of the culture medium is an important factor for the mass production of mycelia in submerged cultures. The influence of liquid medium on the mycelial dry weight of Paecilomyces tenuipes was investigated in this study. The regression equation is expressed as Y=-1292.94187+17.78612X1+18.92425X2+2.11464X3-0.019375X1X2-0.006276X1X3+0.008177X2X3-0.070169X12-0.292175X22-0.008818X32, where Y represents the value of the mycelial dry weight (g/L), X1 is the particle size of wood sawdust in liquid medium (mesh), X2 is the concentration of the wood sawdust in liquid medium, and X3 is incubation time (h). The medium was optimized using a response surface methodology, and the optimal medium contained 30 g of wood sawdust (140 mesh), 20 g of glucose, and 10 g/L of peptone. Under these conditions, the mycelial dry weight reached 38.1 g/L (actual value). The culture medium containing wood sawdust is simple and easy to use, highly efficient, and eco-friendly, and its effectiveness in large preparations of P. tenuipes mycelia with low material costs has been demonstrated.

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.