• Title/Summary/Keyword: Si Nanoparticle

Search Result 129, Processing Time 0.025 seconds

전자빔 조사를 이용한 기체상 중공 실리카 나노입자의 제조

  • Kim, Jin-Hyeong;Son, Min-Su;Son, Yeong-Gu;Sin, Won-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.625-625
    • /
    • 2013
  • 본 연구에서는 전자빔 조사를 이용하여 대기조건에서 중공 실리카 나노입자의 새로운 기체상 단일 공정 제조 방법을 제시하였다. 실험에서는 전구체로서 TEOS와 은 나노입자가 사용되었다. EDS 분석 결과 실리카 중공 나노입자의 제조를 확인하였으며, TEM 분석을 통해 제조된 중공나노입자의 평균 지름과 쉘 두께가 각각 56 nm와 10 nm임을 알 수 있었다.

  • PDF

Magnetic Properties of the Ultrafine Co Particle Systems

  • Perov, N.;Sudarikova, N.;Bagrets, A.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • The method for evaluation of the particle size distribution of fine particles from hysteresis loop measurements is Presented. The method is illustrated on the SiO$_2$-based Co nanoparticle systems. The influence of technological conditions of sample preparation onto particle size distribution is investigated.

Fabrication of Core-Sheath Nanocomposite Fibers by Co-axial Electrospinning (공축 전기방사를 이용한 Core-Sheath형 복합나노섬유의 제조)

  • Kang, Minjung;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.2
    • /
    • pp.224-234
    • /
    • 2013
  • This study investigates the fabrication of core-sheath nanocomposite fibers by locating germanium (Ge) and silicon dioxide ($SiO_2$) nanoparticles selectively in the sheath layer by co-axial electrospinning. Co-axially spun fibers were prepared by electrospinning a pure PVA solution and Ge/$SiO_2$/PVA solution as the core and sheath layer, respectively. Core-sheath nanocomposite fibers were electrospun under a variety of conditions that include various feed rates for the core and sheath solutions, voltages, and concentric needle diameters, in order to find an optimum spinning condition. Ge/$SiO_2$ nanocomposite fibers were also prepared by uniaxial electrospinning to compare fiber morphology and nanoparticle distribution with core-sheath nanofibers. Using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray analysis, it was demonstrated that the co-axial approach resulted in the presence of nanoparticles near the surface region of the fibers compared to the overall distribution obtained for uni-axial fibers. The co-axially electrospun Ge/$SiO_2$/PVA nanofiber webs have possible uses in high efficiency functional textiles in which the nanoparticles located in the sheath region provide enhanced functionality.

Characteristics of Meta-aramid Fabrics Coated with Slurry of Nanoscale SiC Particles (나노 탄화규소(SiC) 슬러리로 코팅된 메타-아라미드 직물의 특성)

  • Park, Jong Hyeon;Lee, Sun Young;Won, Jong Sung;Lee, Eung Bo;Kim, Eui Hwa;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • Most of high performance fabrics for the car racing protective clothing have been developed to have thermal resistance, flame retardant property, impact resistance and anti-frictional properties to protect the racer from the crucial accident. In this study, the meta-aramid fabric, which has inherent flame retardant, was coated with nanoparticles of SiC to enhance the impact resistance and anti-friction properties. Uniform coating of the nanoparticles onto the fabrics was obtained by using tape casting method. As the experimental parameters, size and content of the SiC nanoparticle were varied with the coating conditions of the fabric surface. The effects of the nanoparticle coating on the properties of meta-aramid fabric were examined with various instrumental analyses such as SEM, tensile strength and abrasion test.

Cytotoxicity and DNA Damage Induced by Magnetic Nanoparticle Silica in L5178Y Cell

  • Kang, Jin-Seok;Yum, Young-Na;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.261-266
    • /
    • 2011
  • As recent reports suggest that nanoparticles may penetrate into cell membrane and effect DNA condition, it is necessary to assay possible cytotoxic and genotoxic risk. Three different sizes of magnetic nanoparticle silica (MNP@$SiO_2$) (50, 100 and 200 nm diameter) were tested for cytotoxicity and DNA damage using L5178Y cell. MNP@$SiO_2$ had constant physicochemical characteristics confirmed by transmission electron microscope, electron spin resonance spectrometer and inductively coupled plasma-atomic emission spectrometer for 48 h. Treatment of MNP@$SiO_2$ induced dose and time dependent cytotoxicity. At 6 h, 50, 100 or 200 nm MNP@$SiO_2$ decreased significantly cell viability over the concentration of 125 ${\mu}g/ml$ compared to vehicle control (p<0.05 or p<0.01). Moreover, at 24 h, 50 or 100 nm MNP@$SiO_2$ decreased significantly cell viability over the concentration of 125 ${\mu}g/ml$(p<0.01). And treatment of 200 nm MNP@$SiO_2$ decreased significantly cell viability at the concentration of 62.5 ${\mu}g/ml$ (p<0.05) and of 125, 250, 500 ${\mu}g/ml$ (p<0.01, respectively). Furthermore, at 48 h, 50, 100 or 200 nm MNP@$SiO_2$ decreased significantly cell viability at the concentration of 62.5 ${\mu}g/ml$ (p<0.05) and of 125, 250, 500 ${\mu}g/ml$ (p<0.01, respectively). Cellular location detected by confocal microscope represented they were existed in cytoplasm, mainly around cell membrane at 2 h after treatment of MNP@$SiO_2$. Treatment of 50 nm MNP@$SiO_2$ significantly increased DNA damage at middle and high dose (p<0.01), and treatment of 100 nm or 200 nm significantly increased DNA damage in all dose compared to control (p<0.01). Taken together, treatment of MNP@$SiO_2$ induced cytotoxicity and enhanced DNA damage in L5178Y cell.

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

Fabrication of Hydrogen Sensors Using Graphenes Decorated Nanoparticles and Their Characteristics (나노입자가 코팅된 그래핀 기반 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.425-428
    • /
    • 2012
  • This paper presents the fabrication and characterization of graphene based hydrogen sensors. Graphene was synthesized by annealing process of Ni/3C-SiC thin films. Graphene was transferred onto oxidized Si substrates for fabrication of chemiresistive type hydrogen sensors. Au electrode on the graphene shows ohmic contact and the resistance is changed with hydrogen concentration. Nanoparticle catalysts of Pd and Pt were decorated. Response factor and response (recovery) time of hydrogen sensors based on the graphene are improved with catalysts. The response factors of pure graphene, Pt and Pd doped graphenes are 0.28, 0.6 and 1.26, respectively, at 50 ppm hydrogen concentration.

Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets (SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구)

  • Huh, H.K.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.