References
- Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J. and Forrest, M. L. (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457-466. https://doi.org/10.1016/j.addr.2009.03.010
- Akhtar, M. J., Ahamed, M., Kumar, S., Siddiqui, H., Patil, G., Ashquin, M. and Ahmad, I. (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276, 95-102. https://doi.org/10.1016/j.tox.2010.07.010
- Dufour, E. K., Kumaravel, T., Nohynek, G. J., Kirkland, D. and Toutain, H. (2006) Clastogenicity, photo-clastogenicity or pseudo-photoclastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat. Res. 607, 215-224. https://doi.org/10.1016/j.mrgentox.2006.04.015
- Gong, C., Tao, G., Yang, L., Liu, J., Liu, Q. and Zhuang, Z. (2010) SiO(2) nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem. Biophys. Res. Commun. 397, 397-400. https://doi.org/10.1016/j.bbrc.2010.05.076
- Gurr, J. R., Wang, A. S., Chen, C. H. and Jan, K. Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73. https://doi.org/10.1016/j.tox.2005.05.007
- Hamilton, R. F. Jr., Thakur, S. A. and Holian, A. (2008) Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 44, 1246-1258. https://doi.org/10.1016/j.freeradbiomed.2007.12.027
- Hillegass, J. M., Shukla, A., Lathrop, S. A., MacPherson, M. B., Fukagawa, N. K. and Mossman, B. T. (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219-231. https://doi.org/10.1002/wnan.54
- Holsapple, M. P. and Lehman-McKeeman, L. D. (2005) Forum series: research strategies for safety evaluation of nanomaterials. Toxicol. Sci. 87, 315. https://doi.org/10.1093/toxsci/kfi286
- Jin, Y., Kannan, S., Wu, M. and Zhao, J. X. (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem. Res. Toxicol. 20, 1126-1133. https://doi.org/10.1021/tx7001959
- Kim, J. S., Yoon, T. J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., Lee, K. H., Park, S. B., Lee, J. K. and Cho, M. H. (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89, 338-347.
- McNamee, J. P., McLean, J. R., Ferrarotto, C. L. and Bellier, P. V. (2000) Comet assay: rapid processing of multiple samples. Mutat. Res. 466, 63-69. https://doi.org/10.1016/S1383-5718(00)00004-8
- Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Yamashita, T., Yamashita, K., Yoshida, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., Imazawa, T., Itoh, N., Tsunoda, S. and Tsutsumi, Y. (2010) Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie 65, 199-201.
- Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science 311, 622-627. https://doi.org/10.1126/science.1114397
- Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y. and Yagi, K. (2009) Silica nanoparticles as hepatotoxicants. Eur. J. Pharm. Biopharm. 72, 496-501. https://doi.org/10.1016/j.ejpb.2009.02.005
- Oberdorster, G., Ferin, J. and Lehnert, B. E. (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect 102(Suppl 5), 173-179. https://doi.org/10.1289/ehp.94102s5173
- Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect 113, 823-839. https://doi.org/10.1289/ehp.7339
- Papageorgiou, I., Brown, C., Schins, R., Singh, S., Newson, R., Davis, S., Fisher, J., Ingham, E. and Case, C. P. (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fi broblasts in vitro. Biomaterials 28, 2946-2958. https://doi.org/10.1016/j.biomaterials.2007.02.034
- Porter, A. E., Gass, M., Muller, K., Skepper, J. N., Midgley, P. A. and Welland, M. (2007) Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotechnology 2, 713-717. https://doi.org/10.1038/nnano.2007.347
- Singh, N., Manshian, B., Jenkins, G. J., Griffi ths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J. and Doak, S. H. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891-3914. https://doi.org/10.1016/j.biomaterials.2009.04.009
- Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W. and Tang, L. (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre. Toxicol. 7, 22. https://doi.org/10.1186/1743-8977-7-22
- Thomas, K., Aguar, P., Kawasaki, H., Morris, J., Nakanishi, J. and Savage, N. (2006) Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci 92, 23-32. https://doi.org/10.1093/toxsci/kfj211
- Thomas, K. and Sayre, P. (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol. Sci. 87, 316-321. https://doi.org/10.1093/toxsci/kfi270
- Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B. and Zhuang, Z. (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part. Fibre. Toxicol. 7, 1. https://doi.org/10.1186/1743-8977-7-1
- Ye, Y., Liu, J., Xu, J., Sun, L., Chen, M. and Lan, M. (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro 24, 751-758. https://doi.org/10.1016/j.tiv.2010.01.001
- Yoon, T. J., Kim, J. S., Kim, B. G., Yu, K. N., Cho, M. H. and Lee, J. K. (2005) Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed. Engl. 44, 1068-1071. https://doi.org/10.1002/anie.200461910
- Yoon, T. J., Yu, K. N., Kim, E., Kim, J. S., Kim, B. G., Yun, S. H., Sohn, B. H., Cho, M. H., Lee, J. K. and Park, S. B. (2006) Specifi c targeting, cell sorting, and bioimaging with smart magnetic silica coreshell nanomaterials. Small 2, 209-215. https://doi.org/10.1002/smll.200500360
Cited by
- In vitro biological effects of magnetic nanoparticles vol.57, pp.31, 2012, https://doi.org/10.1007/s11434-012-5295-8
- Rapid Hepatobiliary Excretion of Micelle-Encapsulated/Radiolabeled Upconverting Nanoparticles as an Integrated Form vol.5, pp.1, 2015, https://doi.org/10.1038/srep15685
- Evaluation of CdSe/CdS-PEG-FA quantum dots: distribution and observable-adverse-effect-level in mice after intravenous injection vol.42, pp.4, 2012, https://doi.org/10.1007/s40005-012-0026-3
- Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration vol.19, pp.16, 2018, https://doi.org/10.1002/cphc.201701294
- Genotoxicity evaluation of silica nanoparticles in murine: a systematic review and meta-analysis vol.32, pp.1, 2011, https://doi.org/10.1080/15376516.2021.1965277