DOI QR코드

DOI QR Code

Cytotoxicity and DNA Damage Induced by Magnetic Nanoparticle Silica in L5178Y Cell

  • Kang, Jin-Seok (Department of Biomedical Laboratory Science, Namseoul University) ;
  • Yum, Young-Na (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Park, Sue-Nie (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
  • Received : 2010.12.31
  • Accepted : 2011.01.19
  • Published : 2011.04.30

Abstract

As recent reports suggest that nanoparticles may penetrate into cell membrane and effect DNA condition, it is necessary to assay possible cytotoxic and genotoxic risk. Three different sizes of magnetic nanoparticle silica (MNP@$SiO_2$) (50, 100 and 200 nm diameter) were tested for cytotoxicity and DNA damage using L5178Y cell. MNP@$SiO_2$ had constant physicochemical characteristics confirmed by transmission electron microscope, electron spin resonance spectrometer and inductively coupled plasma-atomic emission spectrometer for 48 h. Treatment of MNP@$SiO_2$ induced dose and time dependent cytotoxicity. At 6 h, 50, 100 or 200 nm MNP@$SiO_2$ decreased significantly cell viability over the concentration of 125 ${\mu}g/ml$ compared to vehicle control (p<0.05 or p<0.01). Moreover, at 24 h, 50 or 100 nm MNP@$SiO_2$ decreased significantly cell viability over the concentration of 125 ${\mu}g/ml$(p<0.01). And treatment of 200 nm MNP@$SiO_2$ decreased significantly cell viability at the concentration of 62.5 ${\mu}g/ml$ (p<0.05) and of 125, 250, 500 ${\mu}g/ml$ (p<0.01, respectively). Furthermore, at 48 h, 50, 100 or 200 nm MNP@$SiO_2$ decreased significantly cell viability at the concentration of 62.5 ${\mu}g/ml$ (p<0.05) and of 125, 250, 500 ${\mu}g/ml$ (p<0.01, respectively). Cellular location detected by confocal microscope represented they were existed in cytoplasm, mainly around cell membrane at 2 h after treatment of MNP@$SiO_2$. Treatment of 50 nm MNP@$SiO_2$ significantly increased DNA damage at middle and high dose (p<0.01), and treatment of 100 nm or 200 nm significantly increased DNA damage in all dose compared to control (p<0.01). Taken together, treatment of MNP@$SiO_2$ induced cytotoxicity and enhanced DNA damage in L5178Y cell.

Keywords

References

  1. Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J. and Forrest, M. L. (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457-466. https://doi.org/10.1016/j.addr.2009.03.010
  2. Akhtar, M. J., Ahamed, M., Kumar, S., Siddiqui, H., Patil, G., Ashquin, M. and Ahmad, I. (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276, 95-102. https://doi.org/10.1016/j.tox.2010.07.010
  3. Dufour, E. K., Kumaravel, T., Nohynek, G. J., Kirkland, D. and Toutain, H. (2006) Clastogenicity, photo-clastogenicity or pseudo-photoclastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat. Res. 607, 215-224. https://doi.org/10.1016/j.mrgentox.2006.04.015
  4. Gong, C., Tao, G., Yang, L., Liu, J., Liu, Q. and Zhuang, Z. (2010) SiO(2) nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem. Biophys. Res. Commun. 397, 397-400. https://doi.org/10.1016/j.bbrc.2010.05.076
  5. Gurr, J. R., Wang, A. S., Chen, C. H. and Jan, K. Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73. https://doi.org/10.1016/j.tox.2005.05.007
  6. Hamilton, R. F. Jr., Thakur, S. A. and Holian, A. (2008) Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 44, 1246-1258. https://doi.org/10.1016/j.freeradbiomed.2007.12.027
  7. Hillegass, J. M., Shukla, A., Lathrop, S. A., MacPherson, M. B., Fukagawa, N. K. and Mossman, B. T. (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219-231. https://doi.org/10.1002/wnan.54
  8. Holsapple, M. P. and Lehman-McKeeman, L. D. (2005) Forum series: research strategies for safety evaluation of nanomaterials. Toxicol. Sci. 87, 315. https://doi.org/10.1093/toxsci/kfi286
  9. Jin, Y., Kannan, S., Wu, M. and Zhao, J. X. (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem. Res. Toxicol. 20, 1126-1133. https://doi.org/10.1021/tx7001959
  10. Kim, J. S., Yoon, T. J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., Lee, K. H., Park, S. B., Lee, J. K. and Cho, M. H. (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89, 338-347.
  11. McNamee, J. P., McLean, J. R., Ferrarotto, C. L. and Bellier, P. V. (2000) Comet assay: rapid processing of multiple samples. Mutat. Res. 466, 63-69. https://doi.org/10.1016/S1383-5718(00)00004-8
  12. Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Arimori, A., Isobe, M., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Yamashita, T., Yamashita, K., Yoshida, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., Imazawa, T., Itoh, N., Tsunoda, S. and Tsutsumi, Y. (2010) Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie 65, 199-201.
  13. Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science 311, 622-627. https://doi.org/10.1126/science.1114397
  14. Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y. and Yagi, K. (2009) Silica nanoparticles as hepatotoxicants. Eur. J. Pharm. Biopharm. 72, 496-501. https://doi.org/10.1016/j.ejpb.2009.02.005
  15. Oberdorster, G., Ferin, J. and Lehnert, B. E. (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect 102(Suppl 5), 173-179. https://doi.org/10.1289/ehp.94102s5173
  16. Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect 113, 823-839. https://doi.org/10.1289/ehp.7339
  17. Papageorgiou, I., Brown, C., Schins, R., Singh, S., Newson, R., Davis, S., Fisher, J., Ingham, E. and Case, C. P. (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fi broblasts in vitro. Biomaterials 28, 2946-2958. https://doi.org/10.1016/j.biomaterials.2007.02.034
  18. Porter, A. E., Gass, M., Muller, K., Skepper, J. N., Midgley, P. A. and Welland, M. (2007) Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotechnology 2, 713-717. https://doi.org/10.1038/nnano.2007.347
  19. Singh, N., Manshian, B., Jenkins, G. J., Griffi ths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J. and Doak, S. H. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891-3914. https://doi.org/10.1016/j.biomaterials.2009.04.009
  20. Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W. and Tang, L. (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre. Toxicol. 7, 22. https://doi.org/10.1186/1743-8977-7-22
  21. Thomas, K., Aguar, P., Kawasaki, H., Morris, J., Nakanishi, J. and Savage, N. (2006) Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci 92, 23-32. https://doi.org/10.1093/toxsci/kfj211
  22. Thomas, K. and Sayre, P. (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol. Sci. 87, 316-321. https://doi.org/10.1093/toxsci/kfi270
  23. Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B. and Zhuang, Z. (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part. Fibre. Toxicol. 7, 1. https://doi.org/10.1186/1743-8977-7-1
  24. Ye, Y., Liu, J., Xu, J., Sun, L., Chen, M. and Lan, M. (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro 24, 751-758. https://doi.org/10.1016/j.tiv.2010.01.001
  25. Yoon, T. J., Kim, J. S., Kim, B. G., Yu, K. N., Cho, M. H. and Lee, J. K. (2005) Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem. Int. Ed. Engl. 44, 1068-1071. https://doi.org/10.1002/anie.200461910
  26. Yoon, T. J., Yu, K. N., Kim, E., Kim, J. S., Kim, B. G., Yun, S. H., Sohn, B. H., Cho, M. H., Lee, J. K. and Park, S. B. (2006) Specifi c targeting, cell sorting, and bioimaging with smart magnetic silica coreshell nanomaterials. Small 2, 209-215. https://doi.org/10.1002/smll.200500360

Cited by

  1. In vitro biological effects of magnetic nanoparticles vol.57, pp.31, 2012, https://doi.org/10.1007/s11434-012-5295-8
  2. Rapid Hepatobiliary Excretion of Micelle-Encapsulated/Radiolabeled Upconverting Nanoparticles as an Integrated Form vol.5, pp.1, 2015, https://doi.org/10.1038/srep15685
  3. Evaluation of CdSe/CdS-PEG-FA quantum dots: distribution and observable-adverse-effect-level in mice after intravenous injection vol.42, pp.4, 2012, https://doi.org/10.1007/s40005-012-0026-3
  4. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration vol.19, pp.16, 2018, https://doi.org/10.1002/cphc.201701294
  5. Genotoxicity evaluation of silica nanoparticles in murine: a systematic review and meta-analysis vol.32, pp.1, 2011, https://doi.org/10.1080/15376516.2021.1965277