• Title/Summary/Keyword: Si/O-doped

Search Result 481, Processing Time 0.026 seconds

Study of Al Doping Effect on HfO2 Dielectric Thin Film Using PEALD (PEALD를 이용한 HfO2 유전박막의 Al 도핑 효과 연구)

  • Min Jung Oh;Ji Na Song;Seul Gi Kang;Bo Joong Kim;Chang-Bun Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.125-128
    • /
    • 2023
  • Recently, as the process of the MOS device becomes more detailed, and the degree of integration thereof increases, many problems such as leakage current due to an increase in electron tunneling due to the thickness of SiO2 used as a gate oxide have occurred. In order to overcome the limitation of SiO2, many studies have been conducted on HfO2 that has a thermodynamic stability with silicon during processing, has a higher dielectric constant than SiO2, and has an appropriate band gap. In this study, HfO2, which is attracting attention in various fields, was doped with Al and the change in properties according to its concentration was studied. Al-doped HfO2 thin film was deposited using Plasma Enhanced Atomic Layer Deposition (PEALD), and the structural and electrical characteristics of the fabricated MIM device were evaluated. The results of this study are expected to make an essential cornerstone in the future field of next-generation semiconductor device materials.

Transparent conductive oxide layers-embedding heterojunction Si solar cells (투명접합을 이용한 이종 태양전지)

  • Yun, Ju-Hyung;Kim, Mingeun;Park, Yun Chang;Anderson, Wayne A.;Kim, Joondong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An improved crystalline indium-tin-oxide (ITO) film was grown on an Al-doped ZnO (AZO) template upon hetero-epitaxial growth. This double TCO-layered Si solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides a good interface, resulting in the enhanced photovoltaic performances. It discusses TCO film arrangement scheme for efficient TCO-layered heterojunction solar cells.

  • PDF

The Synthesis of Vanadium-Doped Forsterite by the $H_2O_2$-Assisted Sol-Gel Method, and the Growth of Single Crystals of Vanadium-Doped Forsterite by the Floating Zone Method

  • 박동곤;Mikio Higuchi;Rudiger Dieckmann;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.927-933
    • /
    • 1998
  • Polycrystalline powder of vanadium-doped forsterite (Vδ $Mg_2SiO_4$) was synthesized by the $H_2O_2$-assisted sol-gel method. The vanadium dopant, which was added as VO$(OMe)_3$ in methanol, went through several redox reactions as the sol-gel reaction proceeded. Upon adding VO$(OMe)_3$ to a mixture of $Mg(OMe)_2$ and Si$(OEt)_4$ in methanol, V(V) reduced to V(IV). As hydrolysis reaction proceeded, the V(IV) oxidized all back to V(V). Apparently, some of the V(V) reduced to V(IV) during subsequent gelation by condensation reaction. The V(IV) remained even after heat treatment of the gel in highly oxidizing atmosphere. The crystallization of the xerogel around 880 ℃ readily produced single phase forsterite without any minor phase. Using the polycrystalline powder as feeding stock, single crystals of vanadium-doped forsterite were grown by the floating zone method in oxidizing or reducing atmosphere. The doping was limited in low level because of the high partitioning of the vanadium in liquid phase during melting. The greenish single crystal absorbed visible light of 700∼1100 nm. But, no emission was obtained in near infrared range.

Synthesis and Photoactivity of SnO2-Doped TiO2 Thin Films (SnO2가 도핑된 TiO2 박막의 합성 및 광촉매 효과)

  • Jung, Mie-Won;Kwak, Yun-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.650-654
    • /
    • 2007
  • [ $SnO_2$ ]-doped $TiO_2$ thin films were prepared from tin (IV) bis (acetylacetonate) dichloride and titanium diisopropoxide bis (acetylacetonate) with pluronic P123 or degussa P25 as a structural-directing agent. These hydrolyzed sol were spin coated onto Si(100) wafer substrate. The microstructure, morphology and bonding states of thin films were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of these films was investigated by using indigo carmine solution.

Doping and Annealing Effect on Luminescent Characteristics of $_2$ Phosphor Thin Films (ZnGa$_2$O$_4$형광박막의 발광특성에 미치는 도핑 및 어닐리의 효과)

  • 정영호;정승묵;김석범;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.619-625
    • /
    • 1998
  • Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin film phosphors were prepared on Si(100) wafers and ITO coated glass substrates by rf magnetron sputtering technique and the effects of the substrates dopant and the sputtering paramet-ers were analyzed, Changes of the oreintation were observed after annealine tratment. The grain size of {{{{ {Zn {Ga }_{2 }O }_{4 } }} : Mn thin film deposited on Si wafer was smaller than that on ITO/glass substrate which resulted in higher PL intensity. The PL spectra of Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin films showed sharp green luminescence spec-trum. According to CL spectrum it could be concluded that Mn ions acted as an actuator for green emission by substituting Zn atom sites.

  • PDF

A study on the of Phosphors most suitable a condition of digital FED (디지털전계방출 디스플레이의 형광체 최적조건에 관한 연구)

  • Kim, Soo-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.754-759
    • /
    • 2007
  • Field emission displays (FED) are currently being explored as a potential flat panel display technology. Specifically, the optimization pf efficient bin emitting phosphors in the $Y_2O_3-Nb_2O_5$ system and influence of particle size of phosphors on the luminescent properties was studied. Under 254 nm excitation, Bi activated $YNbO_4$ phosphors showed a strong and relatively narrow blue omission band, peaking at about 420-450 nm. Especially 0.4 wt% Bi doped yttrium phosphors showed the maximum emission intensity which is almost three times as much as that of $Y_2SiO_5:Ce$ phosphors. Finally, Ce doped $Y_2SiO_5$ phosphors exhibited strong and broad blue emission band, centered at 390-420 nm and maximum emission intensity at the doping concentration of 0.02-0.03 mol.