• Title/Summary/Keyword: Si/Al 복합

Search Result 350, Processing Time 0.025 seconds

Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites for Electronic Packaging Applications (전자패키징용 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.190-194
    • /
    • 2000
  • The fabrication process and thermal properties of 50∼76vo1% SiCp/Al metal matrix composites (MMCs) were investigated. The 50∼76vo1% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 85∼170W/mK and coefficient of thermal expansion (CTE) were ranged 10∼6ppm/K. Specially, the thermal conductivity and CTE of 71vo1%SiCp/Al MMCs were ranged l15∼156W/mK and 6∼7ppm/K, respectively, which showed a improved thermal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites by Pressure Infiltration Casting Process (가압함침법에 의한 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.83-87
    • /
    • 1999
  • The fabrication process and thermal properties of 50~71vol% SiCp/Al metal matrix composites (MMCs) were investigated. The 50~71vol% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 118~170W/mK and coefficient of thermal expansion (CTE) were 9.5~$6.5{\times}10^{-6}/K$. Specially, the thermal conductivity and CTE of 71vol%SiCp/Al MMCs were 115~156W/mK and 6~$7{\times}10^{-6}/K$. respectively, which showed a improved themal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Fabrication Process and Analysis of Thermal Properties of High Volume Fraction SiCpi/Al Metal Matrix Composites for Heatsink Materials (반도체 heatsink용 고부피분율 SiCp/Al 금속복합재료의 제조공정 및 열적특성분석)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.58-62
    • /
    • 2000
  • The fabrication process and analysis of thermal properties of 50~76vo1% SiCp/Al metal matrix composites(MMCs) for heatsink materials in electronic packaging were investigated. The 50~76vo1% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 85~170W/mK and coefficient of thermal expansion(CTE) were ranged 10~6ppm1k. Specially, the thermal conductivity and CTE of 71vo1%SiCp/Al MMCs were ranged 115~156W/mK and 6~7ppm/K. respectively, which showed a improved thermal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Synthesis and properties of $Al_2O_3-SiC$ Composites from Alkoxides III. Effect of Composite Powder Type on the Sintering Characteristics and Properties of $Al_2O_3-SiC$ Comopsites (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 III. 복합분말의 형태에 따른 $Al_2O_3-SiC$ 복합재료의 소결 특성 및 물성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.316-324
    • /
    • 1993
  • Three types of dispersed, coated and mechanically mixed SiC reinforced Al2O3 composite powders were used to investigate the effect of composite powder type on sintering characteristics and properties of Al2O3-SiC composites. Sinterability of coated type composite powders was superior to that of other composite powders when they were pressureless sintered at 1500~1$700^{\circ}C$ for 2h in Ar atmosphere. However, sinterabilities (>98% TD) of each type of composite powders were similar when they were hot pressed at 180$0^{\circ}C$ for 1h under 30MPa in N2 atmosphere. SiC powders were randomly distributed in the specimen prepared from dispersed type composite powders, whereas homogeneously distributed for coated type specimens. It was found that SiC powders inhibited the grain growth of Al2O3, and fracture toughness was increased by the increment of crack growth resistance due to residual stress by secondary SiC particles within Al2O3 grains.

  • PDF

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides II. Synthesis of Coated Type $Al_2O_3-SiC$ Composite Powders (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 II. 피복형 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 1993
  • Coated type Al2O3-SiC composite powders were synthesized by surface modification method. Transformation temperature to $\alpha$-Al2O3 of Al2O3 monolith was 115$0^{\circ}C$ whereas increased to 1200, 1250, 130$0^{\circ}C$ with increment of SiC content to 5, 15, 25wt%. Transformation temperature to $\alpha$-Al2O3 was lowered by $\alpha$-Al2O3 seeding. FTIR data analysis and electron micrographs showed that Al2O3 particles were effectively coated on SiC particles.

  • PDF

Optimal Parameter Design for Al/SiC Composites using Design of Experiments (실험계획법에 의한 Al/SiC 복합재료의 최적공정 설계)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-76
    • /
    • 2011
  • In this work, the parameter optimization for thermal-sprayed Al/SiC composites have been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA). Al/SiC composites were fabricated by flame spray process on steel substrate. The hardness of composites were measured using micro-vickers hardness tester, and these results were analyzed by ANOVA. The ANOVA results showed that the oxygen gas flow, powder feed rate and spray distance affect on the hardness of the Al/SiC composites. From the ANOVA results, the optimal combination of the flame spray parameters could be extracted. It was considered that experimental design using orthogonal array and ANOVA was efficient to determine optimal parameter of thermal-sprayed Al/SiC composites.

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.

Dry Sliding Wear Behavior of Carbide-Particle-Reinforced 7075 Al Alloy Matrix Composites (탄화물(SiC, TiC, $B_4C$ ) 입자 강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸 거동)

  • 강석하;박형철;강신철;김용석
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.27-27
    • /
    • 2003
  • 무가압침투법으로 제조된 부피분율 10~24% SiC, TiC, B$_4$C 탄화물 입자강화 7075 Al 합금 기지 복합재료의 건식 미끄럼 마멸거동을 강화입자의 종류, 크기 및 부피 분율을 변수로 연구하였다. 미끄럼 마멸 시험은 pin-on-disk 형태의 마멸 시험기를 사용하여, AISI 52100 베어링강을 상대재로 상온 대기 중에서 실시되었다. 마멸특성의 분석과 마멸기구의 규명을 위하여 마멸면과 마멸단면을 SEM, EDS를 이용하여 분석하였다. 제조된 복합재료의 압축 시험을 통하여 측정된 항복강도와 가공경화지수는 서로 반비례하였고, 각 시편간의 경도 차는 크지 않았다. 마멸 시험결과, 크기 및 부피 분율이 7$\mu\textrm{m}$ !0%인 SiC 입자로 강화된 복합재료를 제외하고, 전체 복합재료 시편은 7075 Al 기지 합금에 비해 낮은 마멸 속도를 보였다. 10N 이하의 저하 중에서는 강화상의 종류와 상관없이 복합재료는 낮은 마멸 속도를 보였고, 25N 이상의 고하중에서는 TiC 입자강화 복합재료가 가장 낮은 마멸 속도를, SiC 입자강화 복합재료가 가장 높은 마멸 속도를 나타내었다. 강화 입자의 크기 및 부피 분율이 동일한 경우 SiC 입자로 강화된 복합재료가 가장 낮은 내마멸성을 나타내었다. 강화상의 크기 및 부피 분율이 증가함에 따라 미소 마멸에서 격렬 마멸로의 천이 하중이 증가하였다.

  • PDF

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.