• 제목/요약/키워드: Shunt resistance

검색결과 112건 처리시간 0.025초

Computational Study on the Hemodynamics of the Bypass Shunt Directly Connecting the left Ventricle to a Coronary Artery

  • Shim Eun Bo;Lee Byung Jun;Ko Hyung Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1158-1168
    • /
    • 2005
  • A shunt from the left ventricle to the left anterior descending artery is being developed for coronary artery occlusive disease, in which the shunt or conduit connects the the left ventricle (LV) with the diseased artery directly at a point distal to the obstruction. To aid in assessing and optimizing its benefit, a computational model of the cardiovascular system was developed and used to explore various design conditions. Computational fluid dynamic analysis for the shunt hemodynamics was also done using a commercial finite element package. Simulation results indicate that in complete left anterior descending artery (LAD) occlusion, flow can be returned to approximately 65% of normal, if the conduit resistance is equal for forward and reverse flow. The net coronary flow can increase to 80% when the backflow resistance is infinite. The increases in flow rate produced by asymmetric flow resistance are enhanced considerably for a partial LAD obstruction, since the primary effect of resistance asymmetry is to prevent leakage back into the ventricle during diastole. Increased arterial compliance has little effect on net flow with a symmetric shunt, but considerably augments it when the resistance is asymmetric. The computational results suggest that an LV-LAD conduit will be beneficial when the resistance due to artery stenosis exceeds 27 PRU, if the resistance is symmetric. Fluid dynamic simulations for the shunt flow show that a recirculating region generated near the junction of the coronary artery with the bypass shunt. The secondary flow is induced at the cutting plane perpendicular to the axis direction and it is in the attenuated of coronary artery.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.

저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성 (Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor)

  • 김은민;김현창;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.

BMS 정밀도 향상을 위한 셀 밸런싱용 션트 고정저항의 허용오차 저감 방법 (A Method of Reducing a Tolerance of a Shunt Resistor for Balance of the Battery Cell to Improve a Precision of BMS)

  • 김은민;손미라;강창룡
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1055-1061
    • /
    • 2018
  • Recently, due to the rapid development of electric vehicle and energy storage system, it is emphasized for battery management system to be needed and to be improved. BMS carries out various movement for optimization the use of the energy and safe use of secondary battery, these movement of BMS start at high wattage shunt fixed resistor which performs a function for detecting current among the BMS components. In addition, for the safe operation of secondary battery, the reliability of current voltage variation detected from shunt should be secured, and for corresponding characteristics, the quality of Temperature coefficient of resistance for BMS shunt and the quality of Thermo electromotive force all must be excellent. For these reasons, this study comes up with the stabilization plan for thermo electromotive force and temperature coefficient of resistance of BMS shunt resistor which is key to secondary battery operation.

Characterization of EFG Si Solar Cells

  • 박세훈
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.1-10
    • /
    • 1996
  • EFG Si 태양전지를 전류-전압, 표면광전압, 전자빔유도_전류, 전자미세프로브, 전자역산란의 여러 가지 기술을 이용하여 분석하였다. 전류-전압 그래프를 여러 온도에서 측정한 결과 EFG-Si 태양전지는 전압에 따라 변하는 shunt 저항을 가진 것이 밝혀졌다. 이러한 shunt 저항은 precipitate와 grain boundary에 의해 생긴 것으로 공간전하영역 내의 불순물 에너지 준위로 tunneling에 의해 이동한 캐리어의 재결합으로 일어난 결과이다. 전류-전압 과 표면광전압 기술을 결합하면 태양전지의 pn접합과 기판 (substrate)을 동시에 분석할 수 있다. Diode ideality factor와 표면 광전압은 Pn접합의 특성을, 소수캐리어 확산거리는 substrate특성을 표시한다. EFG 태양 전지를 분석한 결과, 전압에 따라 변하는 shunt 저항은 효율에 따라 정도 차이는 있지만 모든 시편에서 발견되며, 태양전지의 성능을 저하시키는 중요한 원인 중의 하나가 된다.

  • PDF

대전류 분류기 저항의 정밀측정 (Precise Measurement of High Current Shunt Resistance)

  • 김규태;한권수;권성원;김문석;정주영;김익수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권9호
    • /
    • pp.403-406
    • /
    • 2005
  • Precise measurement of extremely low resistance shunt is important for characterization and calibration of high current instruments. We tested resistance measurement method for extremely high current shunt (up to 140 kA), where resistance is determined by precise measurement of voltage drop at 10 A test current in the frequency range of 40 Hz to 10 kHz. For the extremely low ac voltage to be precisely measured, a verification of the measurement method was also carried, where the inherent noise is systematically evaluated. The measurement uncertainty was estimated to be $1\;\%\;at\;95\;\%$ confidence level (k=2) for about 50 $\mu\Omega$.

전류변성기 비교기와 정밀션트저항을 이용한 전류변성기용 부담의 평가기술 (Evaluation Technique of Burden for Current Transformer using Current Transformer Comparator and Precise Shunt Resistor)

  • 이상화;강전홍;김명수;정재갑
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권5호
    • /
    • pp.250-256
    • /
    • 2006
  • Both ratio error and phase angle error in current transformer(CT) depend critically on values of CT burden. Thus, precise measurement of CT burden is very important for the evaluation of CT. A method for the measurement of CT burden has been developed by employing the portable shunt precise resistor with negligible AC-DC resistance difference less than $10^{-5}$. The burden value(value and power factor) can be calculated from resistance and reactance obtained by measuring the change of ratio error and phase angle error caused by the change of shunt resistor. The uncertainty for the method is evaluated and found to be abut 2 %.

Pd Shunt저항의 제작 및 동력학특성 조사 (Pd Shunt Resistor for Josephson Junction : Fabrication and Dynamic Simulation)

  • 김규태;남두우;이규원;유광민
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.143-145
    • /
    • 2003
  • External shunt resistor is used in Nb/AlOx/Nb Josephson junction which is basic component of RSFQ circuit. This is to increase damping and to make the so called 'self-reset' optimized for high speed operation. In this study, we fabricated and investigated sheet resistance of Pd and PdAu thin film, and simulated the inductance effect of the shunt resistor to the Josepshon junction dynamics.

  • PDF

저항점 용접에 있어서 Shunt영향에 대한 연구 (A study on the shunt effect in resistance spot welding)

  • 부광석;조형석
    • 한국정밀공학회지
    • /
    • 제3권2호
    • /
    • pp.39-54
    • /
    • 1986
  • One of the important factors in practical welding situations is shunt effect which deteriorates weld quality due to a shunt current which flows in the exis- ting spot. Previously, this effect has not been analytically investigated, since the mechanism of shunt effect shows very complicated phenomena in the thermal and electrical behavior. In this paper this effect is extensively studied through theoretical and experimental analysis. The theoretical results obtained from a numerical analysis of the modelling of shunt effect are compared with experimental ones. Both results show good agreement and represent well the mechanism of shunt effect.

  • PDF

Hemodynamics of a Connecting conduit Between the Left Ventricle and the Left Decending Coronary Artery

  • Shim, Eun-Bo;Sah, Jong-Yub
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.20-29
    • /
    • 2003
  • A new treatment for coronary artery occlusive disease is being developed in which a shunt or conduit is placed directly connecting the left ventricle with the diseased artery at a point distal to the obstruction. To aid in assessing and optimizing its benefit, a computational model of the cardiovascular system was developed and used to explore various design conditions. Simulation results indicate that in complete LAD occlusion, flow can be returned to approximately 65% of normal if the conduit resistance is equal for forward and reverse flow, increasing to 80% in the limit in which backflow resistance is infinite. Increases in flow rate produced by asymmetric flow resistance are considerably enhanced in the case of a partial LAD obstruction since the primary effect of resistance asymmetry is to prevent leakage back into the ventricle("steal") during diastole. Increased arterial compliance has little effect on net flow with a symmetric shunt, but leads to considerable augmentation when the resistance is asymmetric. These results suggest that an LV-LAD conduit will be beneficial when stenosis resistance(Rst) > 27 PRU if resistance is symmetric.

  • PDF