• Title/Summary/Keyword: Shunt capacitor

Search Result 107, Processing Time 0.032 seconds

Novel Current Compensation Technique for Harmonic Current Elimination (고조파 전류 제거를 위한 새로운 전류 보상 기법)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.587-591
    • /
    • 2004
  • This paper proposes a novel current compensation technique that can eliminate the harmonic currents included in line currents without computation of harmonic current components. A current controller with fast dynamics for an active filter is described. Harmonic currents are directly controlled without the need for sensing and computing the harmonic current of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The DC voltage control loop keeps the voltage across the DC capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a single-chip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.

  • PDF

Preventive Control Algorithm Using Sensitivity Analysis in Voltage Stability Assessment. (감도 해석을 통한 전압안정도 예방제어 알고리듬 개발)

  • Han, Sang-Wook;Seo, Sang-Soo;Lee, Byong-Jun;Jang, Kyung-Chul;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.483-485
    • /
    • 2005
  • In 2003, there was a wide-area blackout in the United States and Canada. More than fifty million people underwent power failure and the estimated financial loss was about four billion dollars. By such wide-area blackouts, the interest in voltage stability has increased gradually. In order to maintain the voltage stability, the preventive control is essential for a contingency. In this paper, a proper preventive control is determined for defined severe contingencies. Among the preventive control methods (generation rescheduling, load curtailment, tap adjusting, injecting the shunt capacitor, and so on.), this paper presents the injection of shunt capacitors by the sensitivity analysis of the voltage stability assessment for preventive controls. The 2006-2010 KEPCO summer peak system is used in case studies.

  • PDF

A Simplified Control Algorithm for Three-Phase, Four-Wire Unified Power Quality Conditioner

  • Singh, Bhim;Venkateswarlu, P.
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a simplified control algorithm for a three-phase, four-wire unified power quality conditioner (UPQC) is presented to compensate for supply voltage distortions/unbalance, supply current harmonics, the supply neutral current, the reactive power and the load unbalance as well as to maintain zero voltage regulation (ZVR) at the point of common coupling (PCC). The UPQC is realized by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The shunt AF is realized using a three-phase, four leg voltage source inverter (VSI) and the series AF is realized using a three-phase, three leg VSI. A dynamic model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results demonstrating the power quality improvement in the system are presented for different supply and load conditions.

Multiple-Mode Vibration Control Using Piezoelectric Shunted Actuator (압전 분기회로를 이용한 다중모드제어)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.202-207
    • /
    • 2002
  • This paper deals with a novel shunted actuator, which has a capability to suppress multi-mode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of shunted dampers connected with a series and a parallel resistor-negative capacitive branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. To obtain a guideline model of a piezo/beam system connected with a series and a parallel resistor-negative capacitor branch circuit, the governing equations of motion is derived through Hamiltons principle and a piezo sensor equation as well as a shunt damping matrix is developed. The theoretical analysis shows that the shunted actuator developed in this study can significantly reduce multiple-mode vibration amplitudes simultaneously over the whole structural frequency range.

  • PDF

A Control Algorithm Design for 45kVA UPQC Prototype (45kVA UPQC 제어 알고리즘 설계)

  • Jeon, Jin-Hong;Kim, Tae-Jin;Ryoo, Hong-Je;Ahn, Jong-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1483-1485
    • /
    • 2005
  • In recent years, customers and power supplies are interested in power quality. Demands of customers are change from standard quality of distribution power system to various high quality of distribution power system. so, it is necessary to apply power quality compensator. in our project, we develop the UPQC(Unfied Power Quality Compensator of 45kVA which compensates power factor and voltage sag, interruption. it is very frequently occurred power quality problems. As a series and shunt compensator, UPQC consists of two inverters with common dc link capacitor bank. It compensates the current quality in the shunt part and the voltage quality in the series part. In this paper, we present simulation and test result of developed UPQC system. Test for UPQC are performed at voltage sag, flickers and non-linear load conditions. For voltage sag and ficker generation, we use RTDS(Real Time Digital Simulator) and power amplifier system.

  • PDF

A Study on the Service Reliability and Power Quality Improvement Using Hybrid Type Capacitor Bank (하이브리드 타입 커패시터 뱅크를 이용한 공급신뢰도 및 전력품질 개선 방안 연구)

  • Lee, Hansang;Yoon, Dong-Hee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2014
  • The objectives of power system operations are to preserve system stability and reliability as well as to supply proper electric power. For an activation of these objectives, voltage and reactive power should be considered. There are a number of types about reactive power sources, and an insertion of shunt capacitor banks are one of the method to support bus voltage adjacent. This paper includes the design procedure to determine the hybrid type capacitor bank configurations on power system to improve stability and reliability. This procedure includes the capacitor bank capacity calculation, reactor type selection, and reactor capacity calculation. The total capacity calculation of capacitor bank is based on the reactive power margin which is calculated through system studies such as, contingency analysis and Q-V analysis. In the second step, the reactor type and its capacity can be determined through the harmonic analysis. This paper shows that the harmonics are decreased by the proposed hybrid type capacitor bank, especially 5th and 7th harmonics.

Passive Vibration Suppression With an Enhanced Shunted Piezoelectric Circuit (강화된 Piezoelectric Shunt Circuit에 의한 수동진동제어 연구)

  • Kim, W.C.;Park, C.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.36-44
    • /
    • 1999
  • 회로내에 capacitor를 부가 연결시켜 이론과 실험적으로 고찰한 새로운 기법의 연구이다. 종래에 사용되어 온 전자회로는 낮은 주파수의 진동진폭을 억제할 때에 큰 inductance 값을 필요로 하는 결점이 있었다. 이런 문제점을 해결하기 위하여 본 연구에서는 강화된 압전 분권회로에 병렬로 capacitor를 연결하도록 설계하였다. 새로운 기법은 기계적인 analogy 이론에 의해 증명을 하였으며, 알루미늄 보에 대하여 필요한 동조 모드에서 실험적으로 입증하였다. 따라서 이러한 결과들은 electronic passive damping 에 있어서 예전부터 요구되어 온 절반정도의 inductance값만으로도 구조물의 진동응답을 아주 심도 있게 감소시킬 수 있다는 것을 보여주고 있다.

  • PDF

Coordinated Control of ULTC Considering the Optimal Operation Schedule of Capacitors (커패시터의 최적 스케줄링을 고려한 ULTC의 협조 제어)

  • Park, Jong-Young;Park, Jong-Keun;Nam, Soon-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.242-248
    • /
    • 2006
  • This paper proposes a coordinated control method for under-load tap changers (ULTCs) with shunt capacitors to reduce the operation numbers of both devices. The proposed method consists of two stages. In the first stage, the dispatch schedule is determined using a genetic algorithm with forecasted loads to reduce the power loss and to improve the voltage profile during a day. In the second stage, each capacitor operates according to this dispatch schedule and the ULTCs are controlled in real time with the modified reference voltages considering the dispatch schedule of the capacitors. The performance of the method is evaluated for the modified IEEE 14-bus system. Simulation results show that the proposed method performs better than a conventional control method.

STUDY OF VOLTAGE AND HARMONIC STABILITY OF CAPACITOR COMMUTATED CONVERTERS APPLIED TO HVDC/BTB

  • Konishi, Hiroo;Yamada, Tatsuo;Sanpei, Masatoshi;Sano, Takayoshi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.898-902
    • /
    • 1998
  • Voltage and harmonic stability characteristics of capacitor commutated converters applied to a BTB (back to back) system (CCC-BTB) are analyzed and compared to characteristics of a BTB system composed of conventional line commutated converters (LCC-BTB). About 1.6 times larger safe operating regions can be obtained for the CCC-BTB system compared to the latter. The CCC-BTB system results in no harmonic instability problem as it has no shunt reactive compensators in the station and the adjoining AC system generates no low anti-res onance points.

  • PDF

Multi-objective Capacitor Allocations in Distribution Networks using Artificial Bee Colony Algorithm

  • El-Fergany, Attia;Abdelaziz, A.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.441-451
    • /
    • 2014
  • This article addresses an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using the artificial bee colony algorithm. The objective function is adapted to enhance the overall system static voltage stability index and to achieve maximum net yearly savings. Load variations have been considered to optimally scope the fixed and switched capacitors required. The numerical results are compared with those obtained using recent heuristic methods and show that the proposed approach is capable of generating high-grade solutions and validated viability.