• Title/Summary/Keyword: Shrouded Centrifugal Impeller

Search Result 10, Processing Time 0.022 seconds

Experimental Study on Flows within a Shrouded Centrifugal Impeller Passage -at the Shockless Condition- (밀폐형 원심회전차의 내부유동장에 관한 실험적 연구-무충돌 유입 조건에서-)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3262-3271
    • /
    • 1996
  • Flow patterns were measured in a shrouded centrifugal impeller. The flow rate in measurements was fixed at the value corresponding to a nearly zero incidence at the blade inlet. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes from the inlet to the outlet of impeller rotating at 700 rpm, and the static pressure distribution along flow passage and the slip factor at impeller outlet were calculated from the measured values. From these measured data, the primary and secondary flows, the wake production and the static pressure rise in the impeller passage were investigated. Furthermore, the secondary flow patterns and the wake's location in this impeller passage were compared with those of the unshrouded impeller.

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

An Experimental Study on Flow Characteristics in Volute of Centrifugal Turbomachinery (원심형 터보기계의 볼류트네의 유동특성에 관한 실험적 연구)

  • Jeon, Kyung-Joon;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.801-806
    • /
    • 2001
  • The objective of present study is to find the interaction between volute and impeller of the centrifugal turbomachinery with rectangular cross-sectional volute. Flow measurement were taken in shrouded impeller with 12 backward type blades by using a five-hole pressure probe. The measurements are carried out in 7 flow rate, respectively. Primary function of a centrifugal turbo machinery volute is to serve the flow from the impeller and diffuser to pipe system. For the off-design conditions, Influence of pressure distortion was shown by these measurements. As a result, It has caused the decrease of total efficiency of centrifugal turbomachinery. We have also taken data to design volute by these measurements.

  • PDF

Hydrodynamic forces of impeller shroud and wear-ring seal on centrifugal pump (고성능 원심펌프에서 임펠러 시라우드 및 마모 시일의 유체가진력 해석)

  • Ha, Tae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.102-110
    • /
    • 1998
  • The analysis of lateral hydrodynamic forces in the leakage path between a shrouded pump impeller through wear-ring seal and its housing is presented. Governing equations are derived based on Bulk-flow and Hirs' turbulent lubrication model. By using a perturbation analysis and a numerical integration method, governing equations are solved to yield leakage and rotordynamic coefficients of force developed by the impeller shroud and wear-ring seal. The variation of rotordynamic coefficients of pump impeller shroud and wear-ring seal is analyzed as parameters of rotor speed, pressure difference, shroud clearance, wear-ring seal clearance, and circumferential velocity at the entrance of impeller shroud for a typical multi-stage centrifugal pump.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Experimental Study for the Effect of Dimensional Parameters on the Performance of Small Centrifugal Fans (소형 원심형 팬의 형상변수가 성능에 미치는 영향에 대한 실험적 연구)

  • Choi, Jong-Soo;Rhee, Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.57-63
    • /
    • 1998
  • The performance of a centrifugal fan depends on the dimensional parameters of impeller, such as the inlet and exit diameter, area ratio, relative flow angles to the blade, and number of blades. These design parameters, however, are inter-related, so it is very difficult to identify the effect of each parameter to the fan performance. In this experimental study the effect of the design parameters on the performance of a small centrifugal impeller being used for vacuum cleaners are investigated. Total 30 shrouded impellers with 120mm diameter were tested and the results were non-dimensionalized to compare their performance.

  • PDF

Experimental Study of the Effects of Dimensional Parameters on the Performance of Small Centrifugal Fans (소형 원심형 홴의 형상변수가 성능에 미치는 영향에 대한 실험적 연구)

  • Choi, Jong-Soo;Rhee, Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.50-55
    • /
    • 1999
  • The performance of a centrifugal fan depends on the dimensional parameters of impeller, such as the inlet and exit diameter, area ratio, relative flow angles to the blade, and the number of blades. These design parameters, however, are inter-related, so it is very difficult to identify the effect of each parameter on the fan performance. In this experimental study the effects of the design parameters on the performance of a small centrifugal impeller being used for vacuum cleaners are investigated. A total of 30 shrouded impellers with 120mm diameter were tested and the results were non-dimensionalized to compare their performance.

  • PDF

An Experimental Study on Flow Characteristics of Centrifugal Turbomachinery According to The Volute Shape Change (원심형 터보기계의 볼류트형상 변화에 따른 유동특성에 관한 실험적 연구)

  • Park Dae-Song;Jeon Kyung-Joon;Joo Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.623-626
    • /
    • 2002
  • The object of present study is to find the flow characteristics of centrifugal turbomachinery according to the volute shape change. The experiments were carried out for two model; volute-A designed by free vortex conditions and volute-B designed for use in high mass flow rate conditions using the volute-A test results, Flow measurements were taken in shrouded impeller with 12 backward type blades by using a five-hole pilot-tube and carried out in 4 flow rate, $Q/Q_d\;=0,43,\;1.0,\;1.27,\;1,47$, respectively, For volute-B, we found that pressure distribution was more uniform at high flow rate and from $Q/Q_d\;:\;0,43\;to\;Q/Q_d\;:\;1,20$, losses decreased and efficiency increased compare with volute-A.

  • PDF

Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump (원심다단펌프용 디퓨저-리턴채널의 유동특성)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.