• Title/Summary/Keyword: Shrinkage-reducing agent

Search Result 113, Processing Time 0.024 seconds

Autogenous Shrinkage and Engineering Properties of the High Strength Concrete Using Soybean and Waste Edible Oil (식물성 유지 및 폐식용유를 사용한 고강도 콘크리트의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.110-117
    • /
    • 2011
  • This study investigated possibilities for a new reducing shrinkage method of soybean oil(SO) and waste oil(WO) to compare with shrinkage reducing agent(RS) and expansion additive(EA). There was no big difference to flow, air contents, and compressive strength of plain to use SO and WO. For the reducing shrinkage performance, SO and WO was more effective than RS and EA, because their fatty acid reacted with calcium hydroxide of concrete to turn soap. For the pore distribution by porosimter, $0.01{\sim}0.1{\mu}m$ pores of SO and WO were 0 ml/g, and $10{\sim}100{\mu}m$ also remarkably lower than any others. In these results, it inferred that they filled up capillary pore and mitigated autogenous shrinkage by their saponification of their fatty acid and calcium hydroxide.

  • PDF

Autogenous Shrinkage and Fundamental Properties of the High Strength Mortar Containing Waste Vegetable Oil (폐식용유를 사용한 고강도 모르터의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Song, Ri-Fan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • The objective of this paper is to explore the possibility of reuse of waste vegetable oil (WO) as an autogenous shrinkage reducer for high strength concrete and to compare the amount of autogenous shrinkage of the mortar using existing shrinkage reducing agent(SR) and expansive additives(EA). According to test results, as the dosages of WO increased, flow value exhibited to decrease, while the use of SR increased flow value. For the effect of WO on strength, although the use of SR and WO resulted in a slight decrease in compressive strength at early age, at 91 days they had similar strength level of the plain mixture. For autogenous shrinkage, as expected, the addition of WO, SR and EA resulted in a decrease of autogeneous shrinkage considerably especially, WO had superiority in autogenous shrinkage reducing effect compared with the case of SR and EA.

  • PDF

Drying Shrinkage and Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powder (재유화형 폴리머 분말수지 혼입 폴리머-시멘트 모르타르의 건조수축 및 강도특성)

  • Yeon, Kyu-Seok;Joo, Myung-Ki;Jeong, Jung-Ho;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.533-536
    • /
    • 2005
  • Drying shrinkage and strength of the redispersible SBR and PAE powder-modified mortars were experimentally investigated. Results of the study that the drying shrinkage rapidly increased until 7 days of age and it was then saturated to the value of about $1\~2\times10^{4}$ after 14 days. It turned out that the polymer-cement ratio exerted more influence on the drying shrinkage than the content of powder shrinkage-reducing agent did. Flexural (compressive) strength of the mortar increased (decreased) as the polymer-cement ratio increased and it was 7$\~$11 (23$\~$39) MPa at 7 days of age. The average (maximum) increasing (decreasing) rate turned out to be about 10 (30) $\%$. As in the drying shrinkage case, the polymer-cement ratio exerted more influence on both flexural and compressive strengths than the content of powder shrinkage agent did.

  • PDF

Influences of Admixtures on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용하는 바닥 모르타르의 특성에 미치는 혼합재료의 영향)

  • 정성철;표대수;송명신;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.921-924
    • /
    • 2000
  • The purpose of this paper is to investigate the effects of admixture such as AE water reducing agent and Flyash on properties of cement mortar for floor. As for the effects of AE water reducing agent kinds, fluidity and air content increase in order for melamine type, lignine type and naphtalene type. As Flyash contents increase, fluidity shows high, but air content shows decline tendency. compressive strength according to AE water reducing agent kinds increase in order for melamine type, lignine type and naphtalene type. As AE water reducing agent content increases, it shows to be decreased. As for the effects of Flyash, it retards at early age but at later age it gains high with increase of Flyash contents due to pozzanic reaction. Drying shrinkage shows to be docreased slightly with increase of AE water reducing agent.

Drying shrinkage and Pore Structure of Blast Furnace Slag Concrete Mixed Alkaline Stimulation (알칼리 자극제 혼입 고로슬래그 콘크리트의 건조수축과 공극구조)

  • Park, Ji-Woong;Lee, Gun-Cheol;Gao, Shan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.32-33
    • /
    • 2016
  • This purpose of this study is to find the properties of pore structure and length change of blast furnace slag cement added alkali powder stimulant on shrinkage reducing agent presence. In length change, the specimen added alkaline stimulant was smaller than normal blast furnace slag concrete. And the specimen added shrinkage reduction agent was confirmed to show smaller rate of length change than the length. In MIP analysis of 1day-age, 0.1㎛ subsequent pore amount of the specimen added alkaline stimulant was significantly smaller value the normal blast furnace slag concrete specimen.

  • PDF

A Fundamental Study on the Development of AE Water Reducing Agent for Reduction of Bleeding (블리딩 저감용 AE감수제 개발에 관한 기초적 연구)

  • 문학용;김한준;김규용;신동인;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • This study is to investigate the probability to develop the AE Water-reducing agent which can decrease the bleeding by mixing melamine type super-plasticizer(SP) and methyl cellulose(MC) viscosity agent. According to the result, as the mixing ratio of melamine type SP and MC viscosity agent increases, the bleeding is reduced due to a increase of the air content. When the mixing ratio of melamine type SP and MC viscosity agent is 1:2 and 1;3 at the water content of 165kg/$m^3$ and 175kg/$m^3$ respectively, slump and air content are satisfied and bleeding is reduced to some extent, so this is determined as the mixing ratio of AE water reducing agent for reduction of bleeding. It is prove that the developed AE water reducing agent for reduction of bleeding can reduce the amount of bleeding and prohibit the plastic shrinkage crack by slowing down the bleeding speed. Compressive strength of hardened concrete does not make any difference in comparison with plain concrete.

  • PDF

Material Properties and Shrinkage Crack Resistance of Concrete Produced with Fluorine-Silicate Hybrid Type Crack Reducing Agent (불소-실리카 복합형 균열저감제가 첨가된 콘크리트의 재료 특성과 수축균열 저항성)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.553-558
    • /
    • 2006
  • In this study, fluorine-silicate hybrid type crack reducing agent(FS) consisted of fluorine and silicate compounds applied to concrete mix(specification : 25-30-18) between 0.5% and 2.0% at intervals of 0.5% based on cement weight. Experiments for material properties of concrete such as slump, air content and bleeding with elapsed time were performed. Experiment and elucidation for shrinkage crack resistance as well as adiabatic hydration temperature were also carried out. It was appeared that FS addition contributed to lower bleeding and hydration temperature without disturbance of fresh properties of concrete such as slump and air content compared to non-added concrete. Especially, shrinkage crack resistance of concrete resulted from plastic and drying shrinkage could be effectively reduced by the addition of FS ranging from 1.0% to 1.5%.

Properties of shrinkage reducing agent and mortar used Anhydrite and C12A7-based slag (무수석고와 C12A7계 슬래그를 사용한 수축저감제 및 모르타르 특성)

  • Park, Soo-Hyun;Chu, Yong-Sik;Seo, Sung-Kwan;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • In this study, shrinkage reducing agent was fabricated with $12CaO{\cdot}7Al_2O_3(C_{12}A_7)$ of CA-based slag and anhydrite. Mortars added shrinkage reducing agent were experimented for enhancement of shrinkage reduction and compressive strength. The properties of setting time, length change and compressive strength of mortar changed with mixing ratios. From 0% to 6% $C_{12}A_7$-based slag, setting times got shorter and length changes of mortars were similar to 7days. From 1day to 7days, the more mortar had $C_{12}A_7$-based slag, the higher compressive strength. At 28days, compressive strength of mortars with 6% $C_{12}A_7$-based slag was about 36MPa. After 35days, mortar with 6% $C_{12}A_7$-based slag had the lowest ratio of shrinkage reduction. So mortar with 6% $C_{12}A_7$-based slag had the excellent characteristics such as compressive strength and shrinkage reduction ratio.

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

Engineering Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for the Type of Bleeding Reduction (블리딩저감형 AE감수제를 사용한 콘크리트의 공학적 특성)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.133-140
    • /
    • 2004
  • This study is intended to investigate the properties of bleeding reduction of concrete using AE water reducing agent for the type of bleeding reduction with the replacement admixture. According to the results, when the adding ratio of AE water reducing agent for the type of bleeding reduction increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 50 min. When AE oater reducing agent for the type of bleeding reduction is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for the type of bleeding reduction. Synthetically, it proves that AE water reducing agent for the type of bleeding reduction satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.