• 제목/요약/키워드: Shrinkage performance

검색결과 439건 처리시간 0.021초

팽창재와 수축저감제 사용 고성능 콘크리트의 내구성 평가 (Evaluation on the Durability of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent)

  • 고경택;박정준;강수태;이종석;김도겸;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.818-821
    • /
    • 2004
  • Generally, the high performance concrete of drying cracking and autogenous shrinkage are tend to be increased. In the previous study, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separtely using method of that. This study is to investigated the durability of high performance concrete using expansive additive and shrinkage reducing agent. Test results showed that the high performance concrete using expansive additive and shrinkage reducing agent had very good not only the durability performance such as salt injury, carbonation, resistance to freezing-thawing and permeability but also the resistance to shrinkage.

  • PDF

농업용 콘크리트 구조물용 라텍스개질 보수용 모르타르의 수축 및 내구성능 평가 (Shrinkage and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Concrete Structures)

  • 원종필;이재영;박찬기;박성기;김완영
    • 한국농공학회논문집
    • /
    • 제49권5호
    • /
    • pp.23-30
    • /
    • 2007
  • This research was to evaluate the shrinkage and durability performance of latex modified repair mortar and to improve the service lift of the agricultural concrete structures. The shrinkage characteristics of the repair material creates the delamination of repair materials and existing concrete. It may reduce the service life of structures. Also the reduction of durability performance of the repair materials induces the destruction of the repaired concrete structures at early stage. In this research, plastic and drying shrinkage, thermal expansion coefficient for shrinkage properties, durability performance, permeability, repeated freezing and thawing, and resistance of chemical solution test were performed. Test results showed that the latex modified repair mortar indicated the shrinkage amount which the delamination does not happen, and the latex modified repair mortar appeared excellent long-term durability performance which can increase the service life.

고성능 콘크리트의 자기수축 예측모델에 관한 연구 (Prediction Model on Autogenous Shrinkage of High Performance Concrete)

  • 유성원;소양섭;조민정;고경택;정상화
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.97-105
    • /
    • 2006
  • 고성능 콘크리트의 자기수축은 초기균열을 유도할 수 있기 때문에 내구성 측면에서 매우 중요하다. 이에 따라, 본 연구에서는 실험을 통해 혼화재료를 혼입한 고성능 콘크리트의 자기수축 특성을 분석한 후 예측모델을 제안하였다. 이를 위해 다양한 실험변수를 가진 시편에 대해 광범위한 실험을 수행하였다. 주요 실험변수는 혼화재료의 종류 및 혼입률로 설정하였으며 물-시멘트비는 30%로 고정하였다. 실험결과 플라이애시를 치환한 경우에는 자기수축량이 다소 감소하였으며, 고로슬래그를 사용한 경우에는 자기수축이 증가하였다. 또한, 수축저감제 및 팽창재의 혼입량이 클수록 고성능 콘크리트의 자기수축은 감소하는 경향을 보였다. 한편, 본 논문에서는 회귀분석을 통해 혼화재료를 사용한 고성능 콘크리트의 자기수축 예측식을 제안하였으며, 제안된 자기수축 예측식은 실험결과와 비교적 일치하였다

수축저감재료의 영향을 고려한 고성능 콘크리트의 자기수축 예측 모델 (Prediction Model on Autogenous Shrinkage of High Performance Concrete Used Material for Shrinkage Reduction)

  • 고경택;강수태;유성원;김도겸;한천구;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.285-288
    • /
    • 2004
  • Generally, the autogenous shrinkage of high performance concrete is important in that it can lead the early cracks in concrete structures. In the previous study, The. autogenous shrinakge of HPC was found to decrease with incresing expansive additive and shrinakge reduction agent. In case of combined use, the autogenous shrinakge was more reduction than in case separate use. The purpose of this study is to derive a realistic equation to estimate the autogenous shrinakge model of high performance concrete with exapnsive agent and shrinakge reduction agent. investigated the durability of high performance concrete using expansive additive and shrinkage reducing agent. The proposed equation showed reasonably good correlation with test data on autogenous shrinakge of high performance concrete with material for shrinkage reduction.

  • PDF

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선 (Performance Improvement of High Performance Shrinkage Reducing Agent using Early Strength Improving Agent)

  • 박종필;정용욱
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.296-302
    • /
    • 2016
  • 콘크리트의 내구성 저하로 인한 균열의 보수 및 보강에 소요되는 비용은 콘크리트 구조물의 유지비용 증대로 연결되어 균열발생 저감에 대한 연구가 요구되고 있다. 특히, 전력공급용 시설인 전력구의 경우 지하 매설물이므로 보수 및 보강은 경제적으로 큰 부담이 된다. 그러므로 지하매설 전력구의 경우 효과적인 균열 저감 방안이 설계 초기단계부터 요구되어진다. 본 연구는 전력구용 저수축 콘크리트 제조를 위한 수축저감제 개발의 일환으로 수축저감제 사용 콘크리트의 초기 강도 개선을 위해 TEA를 검토하였다. 검토결과, TEA를 수축저감제의 3% 사용할 경우 조기 강도가 크게 개선되었으며, 수축저감 효과도 우수한 것으로 확인되었다. 또한, TEA 3 %에 수축저감제 2.0 % 혼합하여 적용하였을 경우 압축강도 특성 및 건조수축 길이변화 실험결과에서 가장 우수한 것으로 나타나 수축저감제로서의 가능성을 확인하였다. 추후 수축저감제의 범용적인 적용성 검토를 위하여 수축저감제의 사용재료 변화 등에 대한 다양한 재료변수 요인 검토를 통하여 수축저감제의 성능 검토가 필요할 것으로 사료된다.

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

고성능 콘크리트의 자기 및 건조수축에 미치는 혼화재의 영향 (Influence on the Autogenous and Drying Shrinkage of High Performance Concrete by Mineral Admixture)

  • 배정렬;홍상희;고경택;김성욱;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.415-420
    • /
    • 2002
  • This study is intended to investigate the influence of mineral admixtures on the autogenous and drying shrinkage of high performance concrete. According to results, drying shrinkage increases with increase of fly ash content, and it does not show difference with replacement of blast furnace slag powder. It increases when incorporating silica fume or fly ash and silica fume together. The autogenous shrinkage shows increasing tendency with increase of silica fume and blast furnace slag powder content, and incorporating of silica fume or fly ash and silica fume together has effects on reducing autogenous shrinkage. Therefore, it is considered that application of both silica fume and fly ash can reduce the cracks caused by autogenous shrinkage, including enhancement in strength and placeability of high performance concrete.

  • PDF

팽창재와 수축저감제를 조합 사용한 고성능콘크리트의 기초물성 및 수축특성 (Fundamental and Shrinkage Properties of High Performance Concrete in Combined with Expansive Additive and Shrinkage Reducing Agent)

  • 한천구;김성욱;고경택;한민철
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.605-612
    • /
    • 2004
  • 본 연구에서는 W/B $30\%$의 고성능 콘크리트에서 팽창재와 수축저감제 병용 사용에 따른 콘크리트의 기초적 특성 및 수축특성에 대하여 분석하였다. 실험결과, 고성능 콘크리트의 유동성은 팽창재와 수축저감제를 단독사용보다 병용사용일 때 더 크게 저하하여 고성능 감수제의 사용량이 증가되었고, 공기량은 증가하여 AE제의 사용량이 감소되었다. 또한, 압축강도는 팽창재량의 혼입률 $5.0\%$를 사용한 경우가 최대가 되고, 수축저감제는 사용량 증가에 따라 저하되는 것으로 나타났다. 고성능콘크리트의 건조수축 및 자기수축을 저감시키기 위해서는 팽창재와 수축저감제를 혼합하여 사용할 때 가장 양호한 결과가 나타났다. 따라서 유동성, 강도 및 수축특성을 종합적으로 고려한 결과, 본 연구실험 조건에서는 팽창재 $5.0\%$, 수축저감제 $1.0\%$의 조합이 최적배합으로 분석되었다.