• Title/Summary/Keyword: Shrinkage Strain

Search Result 277, Processing Time 0.026 seconds

Long-Term Performance of High Strength Concrete

  • Choi Yeol;Kang Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.425-431
    • /
    • 2004
  • This paper describes an experimental investigation of how time-dependent deformations of high strength concretes are affected by maximum size of coarse aggregate, curing time, and relatively low sustained stress level. A set of high strength concrete mixes, mainly containing two different maximum sizes of coarse aggregate, have been used to investigate drying shrinkage and creep strain of high strength concrete for 7 and 28-day moist cured cylinder specimens. Based upon one-year experimental results, drying shrinkage of high strength concrete was significantly affected by the maximum size of coarse aggregate at early age, and become gradually decreased at late age. The larger the maximum size of coarse aggregate in high strength concrete shows the lower the creep strain. The prediction equations for drying shrinkage and creep coefficient were developed on the basis of the experimental results, and compared with existing prediction models.

An experimental study on the measurement of stress due to autogenous shrinkage of high strength concrete with bar restraint (철근구속을 받는 고강도 콘크리트의 자기수축응력에 관한 실험 연구)

  • 최진영;박신일;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.67-72
    • /
    • 2002
  • The purpose of this study is to investigate on the measurement of stress due to autogenous shrinkage of high strength concrete according to the W/C ratio at early age. The main parameters are as follows W/C ratio is 25, 30, 40%. The size of specimen is 10$\times$10$\times$150cm and the autogenous shrinkage strain is measured by the bonded strain gauge at the inside of the specimens. From the test, it is suggested that the autogenous shrinkage stress increased as W/C ratio decreased.

  • PDF

FIND THE ROOT CAUSE OF WELDING-INDUCED DISTORTION BY NUMERICAL MODELING METHOD

  • Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.681-687
    • /
    • 2002
  • The cumulative, shrinkage plastic strains and their distributions in the weld joint after completion of the welding process determine welding-induced distortion. Although the weldment undergoes many complex physical and metallurgical changes during welding, only the material plastic temperature range and its cooling history below this temperature range influence the [mal state of the cumulative shrinkage plastic strains. In addition, for structural welds, these plastic strains are uniform, except in the arc start and stop regions, along the weld. Therefore, the plastic strain-based "inherent shrinkage model" is effective and accurate to describe welding-induced distortion. This paper presents the theoretical background and numerical verification of this root cause.

  • PDF

Characteristics of the Hardening Shrinkage and Creed of Eporxy Resin Concerte (에폭시 수지 콘크리트의 경화수축 및 크리이프 특성)

  • 허남철;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.1
    • /
    • pp.109-119
    • /
    • 1990
  • This study was accomplished to investigate the characteristics of hardening shrinkage and initial creep of epoxy resin concrete depending on the presence of filler. According to the test results, the hardening shrinkage was increased with increment of sLOrage temperature, and the ef¬feel of tempemture on the hardening shrinkage of epoxy resin concrete with 6% filler was more Significant than that of epoxy resin concrete without filler. Also, the initial creep strain was increased with loading times, stress--strength ratio and elastic strain, and the values for opoxy resin concrete with 6 % filler are higher than that for eposy resin concrete without filler.

Study on the compensation of shape error using Shrinkage rate of resin in Rapid Prototyping (쾌속조형시 레진의 수축률을 고려한 형상오차보정에 관한 연구)

  • 이지용;김태호;박재덕;박정보;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-355
    • /
    • 2003
  • Recently, the Rapid Prototyping System makes used of changing file format. The most problem is produced by this process. It is influenced by the precision of shape manufacturing. And It is most influenced by shrinkage rate within many elements influence the precision of 3D shape manufacturing. In result, the length strain in each axis cause at STL file transforming. It will compensate for utilizing the shrinkage rate.

  • PDF

The Effect of Heat Treatment on Shrinkage and Mechanical Properties of PET Filament (섬유공정에서의 습.건열처리가 PET 필라멘트사의 열수축과 인장특성에 미치는 영향)

  • 김경렬;김승진;김태훈;김영진;이응곤;송재수
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.10-19
    • /
    • 1998
  • This paper investigates the change of mechanical properties and thermal shrinkage in commercial multi-filament PET(polyethylene terephthalate) , namely, regular yarn, POY, DTY and composite yarn. To determine changing the effects of processing steps, these were examined at three steps process simulation conditions. The first step is sizing simulation$(S-1\;step\;:\;130^\circ{C}\times2\;min$., hot air treatment under 0.1 gf/d load), the second step is scouring simulation$(S-2\;step\;:\;100^\circ{C}\times20\;min$., boiling water treatment under free tension)and final step is setting simulation$(S-3\;step\;:\;180^\circ{C}\times2\;min$., hot air treatment under free tension). Regular yarn in multi-step treatment showed higher shrinkage at S-3 step and DTY showed higher in at S-1 step. While POY was relaxed at S-1 step, composite yarn showed different shrinkage properties depending on composite yarn type. Mechanical properties showed good relationship with shrinkage : high shrinkage makes initial modulus decrease and bleating strain increase. It also makes decreasing yield strain and yield stress decrease.

  • PDF

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

Compressive Strength and Shrinkage Strain of Slag-Based Alkali-Activated Mortar with Gypsum (석고가 첨가된 슬래그 기반 알카리활성 모르터의 압축강도 및 건조수축 변형률)

  • Yang, Keun-Hyeok;Sin, Jae-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Twelve mortars were mixed and tested to explore the effect of gypsum on the compressive strength development and shrinkage strain of alkali-activated mortars. Powder typed sodium silicate and ground granulated blast-furnace slag were employed as alkaline activator and source material, respectively, to produce cementless mortar. The main variables investigated were alkali quality coefficient combining the concentration of activator and main compositions in source material, and the adding amount of gypsum ranged between 1 and 5% with respect to the weight of binder. Initial flow, compressive strength development, modulus of rupture, and shrinkage strain behavior of mortar specimens were measured. In addition, the hydration production of alkali-activated pastes with gypsum was traced using X-ray diffraction and energy-dispersive X-ray analysis combined with scanning electron microscope image. Test results showed that the initial flow of slag-based alkali-activated mortar was little influenced by the adding amount of gypsum. On the other hand, the effect of gypsum on the compressive strength of mortar specimens was dependent on the alkali quality coefficient, indicating that the compressive strength increased with the increase of the adding amount of gypsum until a certain limit, beyond which the strength decreased slowly. Shrinkage strain of mortar tested was little influenced by the adding amount of gypsum because no ettringite as hydration product was generated. However, the adding of gypsum had a beneficial effect on reducing the microcrack in the alkali-activated mortar.

Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition (콘크리트 강도, 발현 속도 및 양생조건에 따른 자기수축 특성 비교)

  • Yang, Eun-Ik;Shin, Jung-Ho;Choi, Yoon-Suk;Kim, Myung-Yu;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.741-747
    • /
    • 2011
  • In this study, autogenous shrinkage strain and prediction models of concrete specimens were compared with strength level and development rate. Also, concrete autogeneous shrinkage under various curing conditions was investigated. The results showed that autogeneous shrinkage increased as concrete strength increased. However, when the concrete strength was almost identical, the initial autogeneous shrinkage of OPC was larger than BFS, but the final autogeneous shrinkage of BFS was larger than OPC. Early wet curing reduced autogeneous shrinkage strain. Especially, when the early wet curing was applied for more than 24 hours, final autogeneous shrinkage was significantly reduced. The results showed that the existing EC2 models do not reflect concrete properties properly. Therefore, the revised model was proposed to better predict autogeneous shrinkage.

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF