• 제목/요약/키워드: Shrinkage Factor

검색결과 133건 처리시간 0.029초

초고강도 콘크리트의 자기수축 및 물리적 특성에 관한 기초적 연구 (A Basic Study on Autogenous Shrinkage and physical property of the Ultra-High-Strength Concrete)

  • 박현;윤기현;조승호;김광기;김우재;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.57-60
    • /
    • 2009
  • In ultra-high-strength concrete, autogenous shrinkage is larger than dry shrinkage due to the consume of a large amount of cement and cementitous material, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain for ultra-high-strength concrete. So, this paper have prepared super-high-strength concrete with specified mixing design strength of over 150MPa and have evaluated a method of reducing autogenous shrinkage by utilizing expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by autogenous shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher when the contents of the expander material were higher. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF

편성조직과 편성밀도에 따른 외의용 면위 편성포의 형태 안정성에 관한 연구 (Studies on Dimensional Properties of Cotton Weft-Knitted Fabrics for outerwear)

  • 김영리
    • 한국의류학회지
    • /
    • 제21권1호
    • /
    • pp.170-181
    • /
    • 1997
  • The purpose of this study was to determine the effect of knit structure and knit density (machine tightness factor) on the dimensional properties and K1-4 values of weft-knitted fabrics followed over eleven cycles of mechanical relaxation to provide the basic data for constructing weft-knitted fabrics for outwear with excellent dimensional stability The eighteenth weft-knitted fabrics were produced with different knit structure (1$\times$1 rib, half-cardigan rib, half-milano rib, interlock, single pique, crossmiss interlock) and machine tightness factor (loose, medium, tight) for this study. Dimensional properties such as width, lengh, area shrinkage and dimensional parameter (K) of eighteenth knitted fabrics including thickness and bulk property were measured. The results were as follows; 1. The dimensional behavior of the Ix1 rib and interlock in relaxation cycles was anisotropic, i.e., length shrinkage was usually associated with a width expansion, whereas the other weft-kntted fabrics which have tuck or miss loops in the knit structure behaved isotropically, i.e., length and width shrinkages were usually found. It was proposed that the difference in dimensional behavior between these structures was due to the dissimilar nonrelaxed geometrical shapes of the individual structural units forming these weft-knitted structures. The mechanical relaxation shrinkage of weft-knitted cotton fabrics was dependent on the tightness of construction. For a range of fabrics knitted on this study, an increase in fabric tightness caused a decrease in the length shrinkage of the fabric accompanied by an increase in its width shrinkage.

  • PDF

다층세라믹스 제조시 적층 공정 변수에 따른 수축율 조절 (Shrinkage Control with Variation of Lamination Condition in Multilayer Ceramics)

  • 성재석;구기덕;윤종광
    • 한국세라믹학회지
    • /
    • 제33권11호
    • /
    • pp.1253-1259
    • /
    • 1996
  • In the fabrication of alumina-based multilayer ceramics sintering shrinkages with lamination conditions such as lamination pressure temperature and laminating with and without press die were compared. The sintering shrinkage was affected substantially by lamination pressure and temperature and in the case of laminatino without press die the lower laminated density and a large difference in shrinkage with direction were observed. These results can be explained by introducing a new factor which is the ratio of the changes of areas before and after lamination.

  • PDF

신경망이론을 이용한 어인자의 수준사이를 고려한 최적조건 선정에 관한 연구 (Selecting the Optimum Process Condition Between the Factor Level Using Neural Network)

  • 홍정의
    • 품질경영학회지
    • /
    • 제30권2호
    • /
    • pp.86-98
    • /
    • 2002
  • Defining the relationship between the quality of injection molded parts and the process condition is very complicate because of lots of factor are involved and each factor has a non-linearity. With the development of CAE(Computer Aided Engineering) technology, the estimation of volumetric shrinkage of injection mold parts is possible by computer simulation even though restricted application. In this research, Neural Network applied for finding optimal processing condition. The percent of volumetric shrinkage compared on each case and show neural network can be successfully applied selecting optimum condition not only within factor level but also between factor level.

지하주차장 슬래브 균열저감을 위한 수축저감 콘크리트 현장적용 사례 (Application of shrinkage-reduced concrete to mitigate cracks of slab in parking garages)

  • 서종해;이정호;이규식;전병갑;김준삼;이회근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.197-200
    • /
    • 2012
  • Concrete has cracks from shrinkage that necessarily result from in hardening process. Shrinkage-reduced concrete developed for crack reduction was utilized at a sample construction project. As a result, it is confirmed that crack initation ratio was remarkably reduced when compared to the case of normal concrete utilization. Additional sample project is supposed to use delay joints as well as srinkage-reduced concrete. Subsequently, the result will be reported. The greatest factor which affects in drying shrinkage is unit quantity of water. However, there are a lot off difficulties in field supervision because proper measuring means is not presented in present standard. Therfore, problems depending on ready-mixed concrete concrete companies should be improved by preparing the related standard assoon as possible.

  • PDF

Steatite 자기의 전기적 특성에 미치는 알칼리 토금속 산화물의 영향 (Effects of Alkaline Earth Oxides on Electrical Characteristics of Steatite Porcelain)

  • 이종근;이병하;전승관
    • 한국세라믹학회지
    • /
    • 제16권1호
    • /
    • pp.31-37
    • /
    • 1979
  • The middle point of composition within the system $MgO-Al_2O_3-SiO_2$ has been studied for applicability as ceramics dielectrics. A Kyul Sung Tale of high purity, magnesia clinker of Sam-wha chemical company, C.P. aluminium oxide, calcium carbonate, red lead, barium carbonate which was made into frit were used the raw materials. A number of steatite ceramics were prepared under carefully controlled condition and the water absorption, linear shrinkage, power factor, dielectric constant and dielectric loss were measured at elevated temperature. When we used magnesia clinker as flux, the quantity of this flux was 0.05mole, sintering temperature was continued for 2 hrs. at 1, 27$0^{\circ}C$. From this conditions, we could get the data whose power factor was 0.142%, water absorption was zero, linear shrinkage was 8.76%, dielectric constant was 5.63, dielectric loss was 0.00799. When we used red lead as flux, the quantity of this flux was 0.033mole and 0.066mole, sintering temperature was continued for 2hrs. at 1, 26$0^{\circ}C$. From this conditions, we could get the data whose water absorption was zero, linear shrinkage was 8.03%, and 8.48%, power factor was 0.136% and 0.062%, dielectric loss was 0.0072 and 0.0037. When we used barium carbonate made into frit as flux, the quantity of this flux was 0.02mole, sintering temperature was continued for 2hrs. at 1, 27$0^{\circ}C$. From this conditions, we could get the data whose water absoption was zero, linear shrinkage was 8.44%, power factor was 0.138%, dielectric constant was 5.69, dielectric loss was 0.0074.

  • PDF

초미세 발포 사출 성형 공정에서 성형된 플라스틱의 수축률 측정에 관한 연구 (A Study on Measurement of Shrinkage of Molded Plastics in a Microcellular Foaming Injection Molding Process)

  • 황윤동;차성운;이정현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.621-626
    • /
    • 2001
  • Microcellular foaming process was developed at MIT in 1980's to save a quantity of raw materials and improve mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. Of all process variables, part dimension control and shrinkage are the most influential on the post molded dimension. The post molding dimensional change of thermoplastic resins is important to tool designers for predicting the specific difference of molded part vs. actual mold cavity. Generally, articles injection molded are smaller in size than the cavity; hence, the term shrinkage factor is used to define the allowance a designer specifies. It is important to consider the factors that influence molded part dimension. According to ASTM Designation: D 955, shrinkage from mold dimensions of molded plastics was measured. In injection molding, the difference between the dimensions of the mold and of the molded article produced therein from a given material may vary according to the design and operation of the mold. In this paper, shrinkage data of molded plastic parts was obtained. It can be an important information for designing optimum mold system in a microcellular foaming injection molding process.

  • PDF

열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성 (Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis)

  • 서안나;이종현
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.629-636
    • /
    • 2012
  • Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법 (On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen)

  • 곽시영;조인성
    • 한국주조공학회지
    • /
    • 제39권1호
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.