• Title/Summary/Keyword: Shotcrete strength

Search Result 162, Processing Time 0.026 seconds

Effect of Types of Accelerators and Replacement Levels of GGBFS on the Performance of Shotcrete Mortars (숏크리트 모르타르의 성능에 대한 급결제 종류 및 고로슬래그 미분말 대체율의 영향)

  • Lee, Seung Tae;Kim, Seong Soo;Kim, Dong Gyu;Park, Kwang Pil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, some engineering properties of OPC and GGBFS shotcrete mortars with alkali-free or aluminate accelerator were experimentally examined. As a result, GGBFS mortars with alkali-free accelerator were significantly similar to OPC mortars with same accelerator with respect to both setting time and compressive strength. Comparatively, GGBFS mortars with aluminate accelerator showed a good performance with an increased replacement of GGBFS. Furthermore, when replaced with GGBFS over 50%, the mortars exhibited superior performances of electrical resistivity and chloride ions penetration resistance. Accordingly, it is suggested that GGBFS has a beneficial effect as shotcreting materials in the condition of proper replacement levels.

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.

Numerical study on contact behavior of TSL (Thin Spray-on Liner) (접촉 거동을 고려한 TSL(Thin Spray-on Liner)의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.665-674
    • /
    • 2015
  • A TSL (Thin Spray-on Liner) which consists of polymers has a higher initial strength, faster construction time and higher waterproofing performance than the conventional cementitious shotcrete. Main supporting mechanism of TSL is the adhesion and tensile strength which is distinct from the conventional shotcrete. Even though highly in demand due to its outstanding characteristics, TSL is not yet well-known support material. In this study, to evaluate contact behavior of TSL, numerical analysis was performed with comparing result from laboratory tests. From the analysis, cohesive behavior at the contact surface between TSL and rock can be evaluated by using combination of cohesive and the damage model. In addition, results show that the cohesive stiffness controled slope between force and displacement, the fracture energy controled level of force at the contact.

Construction Method and Durability Evaluation of Mock-up Test for Bobsleigh Track (실물크기형 봅슬레이 트랙 Mock-up Test 시공방법 및 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.315-323
    • /
    • 2016
  • This study examined the durability and method for making a mockup of bobsled tracks for constructing a bobsled stadium, which is a sport in the Winter Olympics. As bobsleigh games are very fast and dangerous, a safety design for players and a precise construction using highly efficient shotcrete is necessary. Moreover, a general molding construction is difficult because bobsleigh tracks are composed of various curves and slopes, and it is necessary to construct them using high-strength and high durability materials. The developed method for making a mockup and performing durability evaluation of bobsleigh tracks through this research will be applied in the construction of the 2018 Pyeongchang Winter Olympics Sliding centre and bobsleigh tracks using domestic techniques.

Preparation of shotcrete coarse aggregate with low grade clay and coal ash (저급 점토와 석탄회를 이용한 숏크리트용 골재의 제조)

  • Kim, Kyung-Nam;Jung, Hee-Su;Park, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2010
  • In this study, the artificial coarse aggregate was manufactured by using coal ash and low grade clay. The characteristics of a coal ash-clay system were investigated using XRD, XRF, TG-DTA, SEM and Dilatometer with various coal ash contents. The chemical compositions are the fly ash, bottom ash and clay, $Al_2O_3$ are 28.5 wt%, 32.4 wt% and 18.1 wt%, and $SiO_2$ are 33.0 wt%, 53.7 wt% and 68.4 wt% in weight ratio, respectively. The shrinkage of specimens started at around $850^{\circ}C$ and changed little up to $1100^{\circ}C$, but increased markedly at above $1100^{\circ}C$. The shrinkage rate is strongly related to the decarbonization amount of coal ash. At the sintering temperature $1150^{\circ}C$, it was found that quartz, mullite, anorthite and albite phase exist in all specimens. It was found that bottom-clay system specimen sintered at $1150^{\circ}C$ had a good compressive strength of 87.5 kg/$cm^2$, and the compressive strength of bottom-clay specimen was higher than that of fly-clay system specimen. The reusability of coal ash as a raw material in the process of shotcrete resources such as artifical coarse aggregate is highly expected.

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

Correlations in the Flexural Performance of SFRC Beams and Panels (강섬유보강 숏크리트의 휨 성능평가를 위한 보시편과 패널시편의 상관성 연구)

  • 류종현;한승환;김진철;안태송;이상돈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.727-732
    • /
    • 2002
  • Steel Fiber Reinforced Shotcrete(SFRS) has been prevalently used in lining to stabilize tunnel structures as temporary or permanent support. In recent, it is one of the major elements of tunnel construction, and so the quality control of SFRC should be clarified to guarantee the safety. The experimental study has been performed to verify the possible correlations in several chracteristics related to quality of SFRC and examine the applicability of round panel test for in field. The test variables were the type and dosage of accelerator, aspect ratio of fiber, and fiber content. The test results such as compressive strength, flexural strength, flexural toughness, and energy absorption capacity, were exmained and analyzed scrutinizingly.

  • PDF

An Experimental Study of Flexural Behavior for Fiber Reinforced Concrete Round Panel according to the Geometry (원형패널의 단면크기에 따른 섬유보강콘크리트의 인성변화에 관한 실험 연구)

  • 오병환;최승원;박대균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.629-634
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. There are so many method to evaluate a toughness; ASTM, JCI, EFNARC, etc. But these methods contain a few defects. So most researchers are studying to develope a new toughness evaluation method. A RTA is one of these methods. The purpose of this study is to explore the strength and toughness characteristic of the fiber reinforced concrete panel according to the geometry; diameter, thickness. The result were compared with those of steel fiber reinforced concrete.

  • PDF

Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades

  • Komurlu, Eren;Kesimal, Ayhan
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.195-205
    • /
    • 2015
  • Barricade failures generally occur at the early times of paste backfill when it is fresh in the stopes. The backfill strength increases and need for barricading pressure decreases as a result of the hydration reactions. In this study, paste backfill barricades of Cayeli copper mine were investigated to design cemented mineral processing plant tailings as barricade body concrete. Paste backfill in sub-level caving stopes of the mine needs to be barricaded for only four or five days. Therefore, short term strength and workability tests were applied on several cemented tailings material designs. Barricade failure mechanisms, important points of barricade designing and details of the new concrete material are explained in this work. According to the results obtained with this experimental study, the tailings were assessed to be used in concrete applied as temporary supports such as cemented paste backfill barricades.