• Title/Summary/Keyword: Shotcrete

Search Result 401, Processing Time 0.023 seconds

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Linings(II) (Construction of Wet-Mixed Shotcrete with Powder Types Cement Mineral Accelerator) (영구 숏크리트 터널 라이닝 구축을 위한 고성능 숏크리트 개발(II) - 시멘트 광물계 분말형 급결제를 사용한 습식 숏크리트 시공 -)

A Study of Field Construction Process Analysis and Economic evaluation of Ready-mixed Shotcrete (레디믹스트 숏크리트의 현장 시공프로세스 분석 및 경제성 평가)

  • Kim, Dong-Min;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1322-1327
    • /
    • 2010
  • Ready-mixed shotcrete mixed with high quality materials and can be controled shotcrete quality is producted in plants and transported to construction fields, so do not need a field batch plant. In this study, the field construction system that can be applied Ready-mixed Shotcrete to construction fields was proposed, and the all-in-one silo that was the key component of the field construction system was design. It was performed to evaluate the constructability that the field construction process analysis in case of applying a field batch plant and the all-in-one silo, the cost analysis of the material production and transport in a road tunnel was also performed to evaluate the economic feasibility of Ready-mixed shotcret.

  • PDF

Mix Proportions of High Performance Shotcrete for Permanent Support (영구지보재로서 고성능 숏크리트의 적정 배합비 도출)

  • Won, Jong-Pil;Kim, Hwang-Hee;Kim, Jung-Hoon;Park, Kyoung-Hoon;Jang, Chang-Il;Lee, Sang-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.41-44
    • /
    • 2006
  • Recently, single shell lining method of construction is studied by economical method of construction to make use of high-performance shotcrete of permanent shotcrete lining concept in the UStA, Europe, Japan etc. High-performance shotcrete use is essential as permanent support that single shell lining method of construction has two functions of lining and support to shotcrete. In this research, optimum accelerator amount was decided after setting time test using alkai-free and cement mineral accelerator. Also replacement ratio of silica fume and fly-ash was determined.

  • PDF

An Experimental Study on the Effect of Cement Braine for Rebound ratio of shotcrete (숏크리트 리바운드율에 미치는 시멘트 분말도 영향에 관한 실험적 연구)

  • Kim, Young-Sun;Kim, Kwang-Ki;Kim, Jae-Young;Choi, Hyun-Kook;Lee, Joo-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.100-101
    • /
    • 2015
  • This study was carried out to investigate and analyse the influence of brain and unit weight of cement on the properties of shotcrete through the laboratory and field test. From the results of the test, the shotcrete with high blaine cement showed the rebound ratio lower and the strength properties higher than the shotcrete with normal blaine cement. Such as this was produced also in the mix with low unit weight of high blaine cement.

  • PDF

Quality Evaluation of shotcrete due to Properties of Steel Fiber (강섬유 특성이 숏크리트 품질에 미치는 영향)

  • Ryu, Jong-Hyun;Kim, Dong-Weon;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.673-676
    • /
    • 2006
  • Steel FibreReinforced Shotcrete(SFRS) is one of the main tunnel support along with the rock bolt during the excavation and after the completion of the tunnel. In the standard qualification of the SFRS defined by Korea Highway Corporation, 28 day core specimen has to meet the compressive strength of 19.6 MPa and over 90 % fibre contents. Furthermore, for the 28 days brick shaped specimen made by shooting, flexural strength should be over 4.4 MPa and flexural toughness ratio which can be calculated from flexural toughness factor has to meet more than 68% of flexural strength. In shotcrete, accelerating agent is added for the rapid strength development. Silicate and aluminate type agents are known to develop shotcrete strength rapidly, however, has such problem to degrade the middle and long term strength. Hence, using poly carboxylic super plasticizer, it was aimed to enhance the quality of the shotcrete with the lower water-cement ratio and the same level of workability. The present paper shows the part of the field test result and its analysis.

  • PDF

An Experimental Study on the Mechanical Properties and Rebound Ratios of SFRS with Silica Fume

  • Son, Young-Hyun;Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • In this study, an experiment in the field was performed to analyze the mechanical properties and the influence of steel fiber and silica fume on the rebound ratios of shotcrete. The experimental parameters which are the reinforcing methods (steel fiber, wire mesh), steel fiber contents (0.0%, 0.5%, 0.75%, 1.0%), silica fume contents (0.0%, 10.0%), layer thickness (60 mm, 80 mm, 100 mm), and the placing parts (sidewall, shoulder, crown) were chosen. From the mechanical test, it was found that the flexural strength and toughness is significantly improved by the steel fiber and/or silica fume. According to the results for the side wall in this test, the larger the fiber contents are in case of steel fiber reinforced shotcrete, the less the rebound ratios are within the range of 20-35%, compared to the wire mesh reinforced shotcrte. And also, the reduced rebound ratios were very larger in using steel fiber reinforced shotcrete with silica fume content of 10%, and these results are true of the shoulder and the crown. respectively.

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Modeling shotcrete mix design using artificial neural network

  • Muhammad, Khan;Mohammad, Noor;Rehman, Fazal
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.167-181
    • /
    • 2015
  • "Mortar or concrete pneumatically projected at high velocity onto a surface" is called Shotcrete. Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing proportions of admixtures could save considerable experimentation time consumed during trial and error based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) models of different network architectures were used to train the network using 15 samples, while 4 samples were randomly chosen to validate the model. The predicted compressive strength from linear regression lacked accuracy with $R^2$ value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher correlations of $R^2$ = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training data and corresponding $R^2$ values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure ANN model.

A Research on the Shotcrete Tunnel Application to Concrete mixing PET Fiber (PET FIBER를 혼입한 콘크리트의 숏크리트 터널 적용에 관한 연구)

  • Kim, Joo-Seok;Yoo, Sang-Geon;Lee, Yong-Jun;Shin, Hyum-Seong;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.928-934
    • /
    • 2008
  • Resently, Fiber Reinforced Concrete is used for not only preventing crack of concrete but also reinforcing general methods. Steel Fiber and PP(poly-propylene) Fiber are usually used as fiber reinforced materials. However, using these materials for shotcrete on Railway tunnel can cause some problems such as damage of pressure hose and shotcrete rebound. In addition, Steel fiber is an expensive material and it can cause safety problems during applying to shotcrete. PP Fiber can cause a problem in fiber balling during applying to shotcrete railway tunnel construction. A purpose of the research is applying a development of PET(Poly Etylene Terephtalate) fiber by recycling pet bottles to the shotcrete tunnel exposed to explosion spalling. To investigate the reinforcement effect of the PET fiber, some basic tests are accomplished to physical properties and explosion spalling by fire. As a result of the tests, a concrete mixing the PET fiber has stronger resistance effect in the explosion spalling by high temperature than another strong fiber concrete does, and that the former concrete is also equal or more effective on the result of the above tests to physical properties like compression and strain than the latter one is demonstrated.

  • PDF

Numerical Study on Shotcrete Lining with Steel Reinforcement Using a Fiber Section Element (화이버 단면 요소를 이용한 강재 보강된 숏크리트 라이닝의 수치해석적 연구)

  • Kim, Jeong Soo;Yu, Jee Hwan;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.919-930
    • /
    • 2014
  • In this study, the load capacities and behaviors of a shotcrete member with steel supports, as composite member, are investigated numerically by using a fiber section element. The cross section of a shotcrete lining with steel support is divided into a bundle of fibers, which are allocated nonlinear stress-strain relations and used for determining internal forces. To verify the used approach of the finite element method for shotcrete with steel supports, the load-displacement relations of shotcrete lining obtained by numerical analysis are compared with existing experimental results and are analyzed with the stress distribution of the shotcrete and steel support obtained numerically. As a result, it is shown that the proposed approach can predict the load capacities of each material and the overall nonlinear behavior of shotcrete lining with steel supports. The change of location of the neutral axis and the flexural resistance ratio of each material are also derived from the stress distribution of the cross section of the shotcrete lining with steel supports. From the results, it is concluded that the flexural resistance performance of steel support should be considered in shotcrete lining design.