• Title/Summary/Keyword: Shot Ball

Search Result 54, Processing Time 0.024 seconds

The Solution of Peening Residual Stress by Angled Impact of Multi Elliptical Shot Ball Based on Finite Element Analysis (유한요소해석에 기초한 다중 타원구 숏볼의 경사충돌에 의해 생성된 피닝잔류응력해)

  • Kim, Taehyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.151-156
    • /
    • 2017
  • Shot peening is widely used to improve the fatigue life and strength of various mechanical parts and an accurate method is important for the prediction of the compressive residual stress caused by this process. A finite element (FE) model with an elliptical multi-shot is suggested for random-angled impacts. Solutions for compressive residual stress using this model and a normal random vertical-impact one with a spherical multi-shot are obtained and compared. The elliptical multi-shot experimental solution is closer to an X-ray diffraction (XRD) than the spherical one. The FE model's peening coverage also almost reaches the experimental one. The effectiveness of the model based on an elliptical shot ball is confirmed by these results and it can be used instead of previous FE models to evaluate the compressive residual stress produced on the surface of metal by shot peening in various industries.

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Weibull Statistical Analysis According to Vickers Indentation Load of Peened ZrO2 Composites Ceramics by Different Shot Size (크기가 다른 Shot에 의하여 Peening한 ZrO2 복합 세라믹스의 비커스 압입하중에 따른 와이블 통계 해석)

  • Ahn, Seok Hwan;Kim, Dae Sik;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.987-995
    • /
    • 2016
  • In this study, the effects of shot peening (SP) on the Vickers hardness of $ZrO_2$ were studied. The size of the shot balls were ${\phi}180{\mu}m$ and ${\phi}300{\mu}m$. The Vickers hardness was measured using an indentation load of 98 N and 294 N. The Vickers hardness was evaluated using Weibull statistical analysis. The scale parameters were significantly evident from the indentation load of 98 N and the shot ball of ${\phi}180 {\mu}m$. Generally, the shape parameters were also evident from the small short ball (180sp). Thus, it is shown that the introduction of a compressive residual stress by SP is an effective technique for increasing the mechanical properties of $ZrO_2$.

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater (ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향)

  • Han, Min-Su;Im, Myeong-Hwan;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.

Evaluation of Harmless Crack Size of SCM822H Steel according to Shot Ball Size (쇼트 볼의 크기에 따르는 SCM822H 강의 무해화 균열크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.725-731
    • /
    • 2023
  • In this study, the harmless crack size was evaluated using carburized, quenched-tempered SCM822H steel. The possibility of detecting cracks that reduce the fatigue limit by non-destructive inspection was evaluated. The conclusions obtained are as follows. The retained austenite of surface was reduced by SP. About 35% and 65% of the retained austenite on the surface were transformed into strain-induced martensite, increasing the hardness by 79HV and 122HV over the as-received material. The maximum compressive residual stresses introduced on the surfaces were -695 MPa and -688 MPa, respectively. The fatigue limit increased by 1.48 times and 1.67 times, respectively, compared to the as-received material. The harmless crack size of SP specimen was determined differently depending on the shot ball size.

A study on the taping techniques of functional golf inner-wear for improving golf swing trajectory & shot distance (골프 스윙궤적 및 비거리 향상을 위한 기능성 골프 이너웨어의 테이핑 기법 연구)

  • Jungwoo Kim
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • The purpose of this study was to develop the Functional golf inner-wear by preventing the injuries and enhancing the performance of the Golf swing by checking the influence of the wearing of the functional golf inner-wear considering golf characteristics on the Swing trajectory and Shot distance. Functional inner-wear effective for golf swing was manufactured using the sports taping method. Changes in driver and iron swing before and after wearing the functional golf inner-wear manufactured in this way were measured using trackman equipment. Measurement variables were limited to Club Speed, Attack Angle, Club Path, Ball Speed, Smash Factor, and Priority. Before and after wearing functional golf inner-wear, there were statistically significant differences in driver club speed, iron club speed, driver etch angle, iron club pass, driver ball speed, driver smash factor, iron smash factor, driver carry, iron carry, and right shoulder joint proprioceptive sensory ability. As a result, functional golf inner-wear is effective for ball speed, impact, and carry by increasing club speed and efficient swing. Future research will focus on the development of functional golf that can improve the swing ability in a short game that plays an important role in the golf game through various sports taping grafting technique, textile, special material, film, Research on functional golf inner-wear.

The Effect of Shot Peening on Corrosive Behavior of SAE 5155 in $3.5\%$ NaCl Solution ($3.5\%$ NaCl수용액에서 SAE 5155의 부식거동에 미치는 쇼트피닝의 영향)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.692-700
    • /
    • 2005
  • In this study. investigated the effect of shot peening on the corrosion of SAE 5155 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was Performed on the four kinds of specimens. Corrosion Potential, polarization curve, residual stress etc. were investigated from experimental results. From these test results, the effect of shot peening on the corrosion was evaluated The important results of the experimental study on the effects of shot peened SAE 5155 on the corrosion are as follows; Shot peened specimens show the low of corrosion current as compared with un peened specimens. In the case of corrosion potential, shot Peened specimen shows more negative Potential as compared with that of parent metal Surface of specimen, which is treated with shot peening Process. is Placed as more activated state against inner parent metal. Corrosion rate is shown that shot Peened specimens have less corrode than un peened specimens. But non heat treated shot peened specimens show the biggest weight loss owing to variable compressive residual stress layer by shot ball.

Effect of Shot Peening on Microstructural Evolution of 500-7 Ductile Cast Iron

  • Zhang, Yubing;Shin, Keesam
    • Applied Microscopy
    • /
    • v.48 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Ductile cast iron is widely used for many automotive components due to its high wear resistance and fatigue resistance in addition to the low cost of fabrication. The improvement of wear resistance and fatigue properties is key to the life time extension and performance increase of the automobile parts. Surface nanocrystallization is a very efficient way of improving the performance of materials including the wear- and fatigue-resistance. Shot peening treatment, as one of the popular and economic surface modification methods, has been widely applied to various materials. In this study, ductile cast iron specimens were ultrasonic shot peening (USP) treated for 5 to 30 min using different ball size. The microstructures were then microscopically analyzed for determination of the microstructural evolution. After the USP treatment, the hardness of pearlite and ferrite increased, in which ball size is more effective than treatment time. With USP treatment, the graphite nodule count near the surface was decreased with grain refinement. The lager balls resulted in an increased deformation, whereas the smaller balls induced more homogenously refined grains in the deformation layer. In addition, formation of nanoparticles was formed in the surface layer upon USP.