• Title/Summary/Keyword: Shot Analysis

Search Result 414, Processing Time 0.029 seconds

A Study on Aleatorism of Frontal-Flat Camera Angle (정평면적 카메라 앵글이 갖는 우연성에 관한 연구)

  • Lee, Yong-Soo
    • Cartoon and Animation Studies
    • /
    • s.32
    • /
    • pp.263-288
    • /
    • 2013
  • This research is about effects which frontal-flat cameras have on narrative films. This kind of confined camera angles make the audience have a sense of tension which is barely defined logically. I think the tension comes from aleatorism. The paper is a research on how aleatorism is working on what kind of value, and what kind of effects it has on narrative films. Russian Formalism had argued they had to meet aesthetic values by totally excluding narratives. It can be said that this was a practice for Brecht's estrangement that a sensitive arousal prohibits the audience immersing into excessive empathy and then make them have a reflective thought. But occasionally, optical arousals in narrative films induce deeper immersion into contemplation rather than reflective thought. I intend to find cases regarding this textualising Front-flat camera angles in narrative films and analysing their contents. To do this, I suggest a more specified definition of 'aleatorism'. Because the concept of the aleatorism is different between an aspect of static image like paintings or photographs and narrative contents like cinema. It is divided into approach through form and approach through content. And I also suggest an operative definition about 'Frontal-flat camera angle' with a several confinements because its formal definition is very flexible depending on audience. The case analysis will be done with a form of discourse discerning two aspects of form and content. Conclusively, Frontal-flat camera angle in narrative film is basically have an effect of attention by optical stimuli. But it cannot be said that this always means deterioration of narrative value. Depending on causality of episodes in the whole story, aleatorism which Frontal-flat camera angle has can support immersed contemplation regarding following narrative rather than reflective thought regarding amusing aesthetics.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.

Metal Matrix Composite(MMC) Layered Armour System (금속복합판재 적용 다층 구조 방호성능 평가)

  • Lee, Minhyung;Park, Sang-Won;Jo, Ilguk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.752-757
    • /
    • 2017
  • Analysis has been performed for the penetration of a long-rod into MMC/Ceramic layered armour system with several shot test and a series of simulations. Two types of MMC plate have been fabricated by a liquid pressing method; A356/45%vol.%SiCp with a uniform distribution of SiC particle and Al7075/45%vol.B4Cp with B4C particle. The mechanical properties were measured with the high-speed split Hopkins bar test, hardness test and compression test. The popular Simplified Johnson-Cook model was adopted to represent the material characteristics for FEM simulations. The performance of the MMC applied armour system has been made by comparing with the semi-infinite mild steel target using the depth of penetration(DOP). The results show that placing ceramic front layer provides a certain gain in protection, and that placing another ductile front layer provides a further gain. The application of MMC is found to be attractive.

A study on the camera working of 3D animation based on applied media aesthetic approach - Based on the Herbert Gettl's theory - (영상미학적 접근의 3D 애니메이션 카메라 워킹 연구 - 허버트 제틀의 이론을 중심으로 -)

  • Joo, Kwang-Myung;Oh, Byung-Keun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.209-218
    • /
    • 2005
  • Consciously or not, producers have to make many aesthetic choices in creative process of video production. If there are general acceptable aesthetic principles to make right choice it would be guideline of aesthetic decision to somewhat reduce mistakes and errors in the process. This paper proposes a theoretical approach on establishing the media aesthetic principle of 3D animation camera working, which is the most suitable for animation production context. We describe the Herbert Zettl's applied media aesthetics related directly to the camera, which is about the two-Dimensional field focusing on aspect radio and forces within the screen, three-dimensional field focusing on depth, volume, and four-dimensional field focusing on time and motion. In order to have theoretical approach we made an analysis on comparing a camera working of movie with 3D computer animation's one, and reconstructed these basic principles to be suited for the 3D animation production. When applied media aesthetics of the traditional camera working are applied to the 3D animation production, it could be an efficient guideline for it. Futhermore, if we develop the research for the relationship with various visual languages with the basis of these principles, the theory of creative picture composition method for the 3D animation production will be logically and systematically established.

  • PDF

The influence of Brexit on Container Volume of Korea (브렉시트(Brexit)의 한국 컨테이너물동량에 대한 영향)

  • Choi, Bong-Ho;Lee, Gi-Whan
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.67-81
    • /
    • 2016
  • This paper examines the influence of Brexit on container volume of Korea, especially of macroeconomic variables such as exchange rate and industrial production of EU and United Kingdom. To do this, we use monthly time series data during 2000-2016, and introduce the analysis method of cointegration test and VECM, and analyze the influence of industrial production and exchange rate of EU and U.K. on container volume of Korea. The results are as follows. First, the container volume of Korea is influenced by the exchange rate and industrial production of EU in the long run. But the exchange and industrial production of U.K. influenced on only export container volume of Korea, and the influence of U.K. macroeconomic variables on container volume of Korea was not large in the long lun. Second, In the shot run, the influence of exchange rate on container volume of Korea, especially on export container volume was significant in EU and U.K. To sum up, the influence of EU macroeconomic variables on container volume of Korea is larger than that of U.K., and the influence of exchange rate variable is more significant than that of industrial production variable.

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Study on On-Sight Image-Based Simulation Method for Predicting and Analyzing Flight Test Results of a Missile (유도무기의 비행시험 결과 예측 및 분석을 위한 현장 영상 기반 시뮬레이션 기법 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.41-48
    • /
    • 2019
  • In modern-war campaign, precision-guided missiles are dominantly used to minimize the collateral damage. Imaging infrared seekers are widely applied for the precise guidance. Due to the high cost of the infrared detector, the cost for the one-shot weapon's test is a burden for the development. To reduce the test cost, a simulation method including imagery tracking is required, which is so-called integrated-flight simulation(IFS). The synthetic image generation(SIG)-based simulation method is typically used, which however cannot represent various environmental and target conditions. In this paper, a new IFS method is proposed using on-sight measured image to overcome the limitations of the SIG-based IFS(SIIFS). The target image acquired at the launching sight has been used only for checking the performance criteria of the image tracker and has not been tried for IFS since it has low resolution and little information. The study described in this paper, however, shows that the on-sight image-based IFS can predict the pre- and mid-course flight performance quite similarly and is very useful for the flight test analysis.