• Title/Summary/Keyword: Shortest Path Problem

Search Result 242, Processing Time 0.027 seconds

Integrated Path Planning and Collision Avoidance for an Omni-directional Mobile Robot

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.210-217
    • /
    • 2010
  • This paper presents integrated path planning and collision avoidance for an omni-directional mobile robot. In this scheme, the autonomous mobile robot finds the shortest path by the descendent gradient of a navigation function to reach a goal. In doing so, the robot based on the proposed approach attempts to overcome some of the typical problems that may pose to the conventional robot navigation. In particular, this paper presents a set of analysis for an omni-directional mobile robot to avoid trapped situations for two representative scenarios: 1) Ushaped deep narrow obstacle and 2) narrow passage problem between two obstacles. The proposed navigation scheme eliminates the nonfeasible area for the two cases by the help of the descendent gradient of the navigation function and the characteristics of an omni-directional mobile robot. The simulation results show that the proposed navigation scheme can effectively construct a path-planning system in the capability of reaching a goal and avoiding obstacles despite possible trapped situations under uncertain world knowledge.

Multi-Dimensional Traveling Salesman Problem Scheme Using Top-n Skyline Query (Top-n 스카이라인 질의를 이용한 다차원 외판원 순회문제 기법)

  • Jin, ChangGyun;Oh, Dukshin;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The traveling salesman problem is an algorithmic problem tasked with finding the shortest route that a salesman visits, visiting each city and returning to the started city. Due to the exponential time complexity of TSP, it's hard to implement on cases like amusement park or delivery. Also, TSP is hard to meet user's demand that is associated with multi-dimensional attributes like travel time, interests, waiting time because it uses only one attribute - distance between nodes. This paper proposed Top-n Skyline-Multi Dimension TSP to resolve formerly adverted problems. The proposed algorithm finds the shortest route faster than the existing method by decreasing the number of operations, selecting multi-dimensional nodes according to the dominance of skyline. In the simulation, we compared computation time of dynamic programming algorithm to the proposed a TS-MDT algorithm, and it showed that TS-MDT was faster than dynamic programming algorithm.

A New Genetic Algorithm for Shortest Path Routing Problem (최단 경로 라우팅을 위한 새로운 유전자 알고리즘)

  • ;R.S. Ramakrishna
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1215-1227
    • /
    • 2002
  • This paper presents a genetic algorithmic approach to shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation that exchanges partial chromosomes (partial-routes) at positionally independent crossing sites and the mutation operation maintain the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types (network sizes and topologies) for almost all source-destination pairs.

Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving (무인 자율 주행을 위한 최단 시간 경로계획 알고리즘 설계)

  • Kim, Dongwook;Kim, Hakgu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.609-617
    • /
    • 2013
  • This paper presents a near-minimum time path planning algorithm for autonomous driving. The problem of near-minimum time path planning is an optimization problem in which it is necessary to take into account not only the geometry of the circuit but also the dynamics of the vehicle. The path planning algorithm consists of a candidate path generation and a velocity optimization algorithm. The candidate path generation algorithm calculates the compromises between the shortest path and the path that allows the highest speeds to be achieved. The velocity optimization algorithm calculates the lap time of each candidate considering the vehicle driving performance and tire friction limit. By using the calculated path and velocity of each candidate, we calculate the lap times and search for a near-minimum time path. The proposed algorithm was evaluated via computer simulation using CarSim and Matlab/Simulink.

A Simple Polygon Search Algorithm

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.41-47
    • /
    • 2016
  • This paper considers simple polygon search problem. How many searchers find a mobile intruder that is arbitrarily faster than the searcher within polygon art gallery? This paper uses the visibility graph that is connected with edges for mutually visible vertices. Given visibility graph, we select vertex u that is conjunction ${\Delta}(G)$ in $N_G(v)$ for $d_G(v){\leq}4$. We decide 1-searchable if $1{\leq}{\mid}u{\mid}{\leq}2$ and 2-searchable if ${\mid}u{\mid}{\geq}3$. We also present searcher's shortest path. This algorithm is verified by varies 1 or 2-searchable polygons.

Development of a Neural network for Optimization and Its Application Traveling Salesman Problem

  • Sun, Hong-Dae;Jae, Ahn-Byoung;Jee, Chung-Won;Suck, Cho-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.5-169
    • /
    • 2001
  • This study proposes a neural network for solving optimization problems such as the TSP (Travelling Salesman Problem), scheduling, and line balancing. The Hopfield network has been used for solving such problems, but it frequently gives abnormal solutions or non-optimal ones. Moreover, the Hopfield network takes much time especially in solving large size problems. To overcome such disadvantages, this study adopts nodes whose outputs changes with a fixed value at every evolution. The proposed network is applied to solving a TSP, finding the shortest path for visiting all the cities, each of which is visted only once. Here, the travelling path is reflected to the energy function of the network. The proposed network evolves to globally minimize the energy function, and a ...

  • PDF

A proposal on multi-agent static path planning strategy for minimizing radiation dose

  • Minjae Lee;SeungSoo Jang;Woosung Cho;Janghee Lee;CheolWoo Lee;Song Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.92-99
    • /
    • 2024
  • To minimize the cumulative radiation dose, various path-finding approaches for single agent have been proposed. However, for emergence situations such as nuclear power plant accident, these methods cannot be effectively utilized for evacuating a large number of workers because no multi-agent method is valid to conduct the mission. In this study, a novel algorithm for solving the multi-agent path-finding problem is proposed using the conflict-based search approach and the objective function redefined in terms of the cumulative radiation dose. The proposed method can find multi paths that all agents arrive at the destinations with reducing the overall radiation dose. To verify the proposed method, three problems were defined. In the single-agent problem, the objective function proposed in this study reduces the cumulative dose by 82% compared with that of the shortest distance algorithm in experiment environment of this study. It was also verified in the two multi-agent problems that multi paths with minimized the overall radiation dose, in which all agents can reach the destination without collision, can be found. The method proposed in this study will contribute to establishing evacuation plans for improving the safety of workers in radiation-related facilities.

About fully Polynomial Approximability of the Generalized Knapsack Problem (일반배낭문제의 완전다항시간근사해법군의 존재조건)

  • 홍성필;박범환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.191-198
    • /
    • 2003
  • The generalized knapsack problem or gknap is the combinatorial optimization problem of optimizing a nonnegative linear function over the integral hull of the intersection of a polynomially separable 0-1 polytope and a knapsack constraint. The knapsack, the restricted shortest path, and the constrained spanning tree problem are a partial list of gknap. More interesting1y, all the problem that are known to have a fully polynomial approximation scheme, or FPTAS are gknap. We establish some necessary and sufficient conditions for a gknap to admit an FPTAS. To do so, we recapture the standard scaling and approximate binary search techniques in the framework of gknap. This also enables us to find a weaker sufficient condition than the strong NP-hardness that a gknap does not have an FPTAS. Finally, we apply the conditions to explore the fully polynomial approximability of the constrained spanning problem whose fully polynomial approximability is still open.

Layer Segmentation of Retinal OCT Images using Deep Convolutional Encoder-Decoder Network (딥 컨볼루셔널 인코더-디코더 네트워크를 이용한 망막 OCT 영상의 층 분할)

  • Kwon, Oh-Heum;Song, Min-Gyu;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1269-1279
    • /
    • 2019
  • In medical image analysis, segmentation is considered as a vital process since it partitions an image into coherent parts and extracts interesting objects from the image. In this paper, we consider automatic segmentations of OCT retinal images to find six layer boundaries using convolutional neural networks. Segmenting retinal images by layer boundaries is very important in diagnosing and predicting progress of eye diseases including diabetic retinopathy, glaucoma, and AMD (age-related macular degeneration). We applied well-known CNN architecture for general image segmentation, called Segnet, U-net, and CNN-S into this problem. We also proposed a shortest path-based algorithm for finding the layer boundaries from the outputs of Segnet and U-net. We analysed their performance on public OCT image data set. The experimental results show that the Segnet combined with the proposed shortest path-based boundary finding algorithm outperforms other two networks.

Hybrid Genetic Algorithm or Obstacle Location-Allocation Problem

  • Jynichi Taniguchi;Mitsuo Gen;Wang, Xiao-Dong;Takao Yokota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.191-194
    • /
    • 2003
  • Location-allocation problem is known as one of the important problem faced in Industrial Engineering and Operations Research fielde. There are many variations on this problem for different applications, however, most of them consider no obstacle existing. Since the location-allocation problem with obstacles is very complex and with many infeasible solutions, no direct method is effective to solve it. In this paper we propose a hybrid Genetic Algorithm (hGA) method for solving this problem. The proposed hGA is based on Lagrangian relaxation method and Dijkstra's shortest path algorithm. To enhance the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  • PDF