• Title/Summary/Keyword: Shortest Path

Search Result 709, Processing Time 0.03 seconds

Shortest Path Calculation Using Parallel Processor System (병력구조 전산기를 이용한 최단 경로 계산)

  • 서창진;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.230-237
    • /
    • 1985
  • Shortest path calculations for a large-scale network have to be performed using a decomposition techniqre, since the calculations require large memory size which increases by the square of the number of vertices in the network. Also, the calculation time increases by the cube of the number of vertices in the network. In the decomposition technique,the network is broken into a number of smaller size subnetworks for each of which shortest paths are computed. A union of the solutions provides the solution of the original network. In all of the decomposition algirithms developed up to now, boundary vertices which divide all the subnetworks have to be included in computing shortest paths for each subnetwork. In this paper, an improved algorithm is developed to reduce the number of boundary vertices to be engaged. In the algorithm, only those boundary vertices that are directly connected to the subnetwork are engaged. The algorithm is suitable for an application to real time computation using a parallel processor system which consists of a number of micro-computers or prcessors. The algorithm has been applied to a 39- vertex network and a 232-vertex network. The results show that it is efficient and has better performance than any other algorithms. A parallel processor system has been built employing an MZ-80 micro-computer and two Z-80 microprocessor kits. The former is used as a master processor and the latter as slave processors. The algorithm is embedded into the system and proven effective for real-time shortest path computations.

  • PDF

Artificial Traffic Light using Fuzzy Rules and Neural Network

  • Hong, You-Sik;Jin, Hyun-Soo;Jeong, Kwang-Son;Park, Chong-Kug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.591-595
    • /
    • 1998
  • This paper proposes a new concept of optimal shortest path algorithm which reduce average vehicle wating time and improve average vehicle speed, Electro sensitive traffic system can extend the traffic cycle when three are many vehicles on the road or it can reduce the traffic cycle when there are small vehicles on the road. But electro sensitive traffic light system doesn't control that kind of function when the average vehicle speed is 10km -20km. Therefore, in this paper to reduce vehicle waiting time we developed design of traffic cycle software tool that can arrive destinination as soon as possible using optimal shortest pass algorithm. Computer simulation result proved 10%-32% reducing average vehicle wating time and average vehicle speed which can select shortest route using built in G.P.S. vehicle is better than not being able to select shortest route function.

  • PDF

A Development of Algorithm for Determining the k Shortest Paths Visiting p Specified Nodes in a Network (p개 특정지점을 경유하는 k-최단경로 알고리즘 개발)

  • Kim Yun-Gil;Min Gye-Ryo
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.105-117
    • /
    • 1990
  • In the transportation network problems, it is often more desirable to select multiple number of optimal parths to prepare for additional constratints being imposed than to choose single optimal path. This paper addresses 'the problem of finding the k-shortest paths visiting p-specified nodes in a network'. The solution method is derived and the example of application is shown. The keypoint for determining the k-shortest paths via p-specified nodes is to combine the Shier's k-shortest path algorithm and the principle of optimality of dynamic programming method. Finally, for a transportation network problem consisting of national main routes, the k-shortest paths via some specified cites are obtained by using the solution method developed here.

  • PDF

Minimum Travel Time Paths for ATIS in Urban Road Networks Using Genetic Algorithms (유전자 알고리즘을 이용한 도시도로망에서의 첨단 여행자 정보시스템(ATIS) 운영계획)

  • 장인성;문형수
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.85-96
    • /
    • 2001
  • This paper discusses the problem of finding the Origin-Destination(O-D) shortest path in urban road networks that have variable special qualifies such as time windows for passing as well as geometrical special qualities such as U-turn and left-turn prohibition. The focus of this paper is motivated by the problem of finding minimum travel time paths for an advanced traveler information system (ATIS) in the context of intelligent transportation system(ITS) application. The transportation network with variable and geometrical special qualities is a more realistic representation of the urban road network in the real word. But, the traditional and existing shortest path algorithms can not search practical shortest path that variable special quality is reflected. This paper presents a shortest path algorithm which can search reasonable shortest path information for the urban ATIS application within a real time. The algorithm is based on genetic algorithm(GA). The high performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

Study on the Shortest Path by the energy function in Hopfield neworks (홉필드 네트웍에서 에너지 함수를 이용한 최적 경로 탐색에 관한 연구)

  • Ko, Young-Hoon;Kim, Yoon-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.215-221
    • /
    • 2010
  • Hopfield networks have been proposed as a new computational tool for finding the shortest path of networks. Zhang and Ali studied the method of finding shortest path by expended neurons of Hopfield networks. Ali Algorithm is well known as the tool with the neurons of branch numbers. Where a network grows bigger, it needs much more time to solve the problem by Ali algorithm. This paper modifies the method to find the synapse matrix and the input bias vector. And it includes the eSPN algorithm after proper iterations of the Hopfield network. The proposed method is a tow-stage method and it is more efficient to find the shortest path.The proposed method is verified by three sample networks. And it could be more applicable then Ali algorithm because it's fast and easy. When the cost of brach is changed, the proposed method works properly. Therefore dynamic cost-varing networks could be used by the proposed method.

Goal-Directed Reinforcement Learning System (목표지향적 강화학습 시스템)

  • Lee, Chang-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.265-270
    • /
    • 2010
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like TD-learning and TD(${\lambda}$)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present GDRLS algorithm for finding the shortest path faster in a maze environment. GDRLS is select the candidate states that can guide the shortest path in maze environment, and learn only the candidate states to find the shortest path. Through experiments, we can see that GDRLS can search the shortest path faster than TD-learning and TD(${\lambda}$)-learning in maze environment.

A Study on Bicycle Route Selection Using Optimal Path Search (최적 경로 탐색을 이용한 자전거 경로 선정에 관한 연구)

  • Baik, Seung Heon;Han, Dong Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.425-433
    • /
    • 2012
  • Dijkstra's algorithm is one of well-known methods to find shortest paths over a network. However, more research on $A^*$ algorithm is necessary to discover the shortest route to a goal point with the heuristic information rather than Dijkstra's algorithm which aims to find a path considering only the shortest distance to any point for an optimal path search. Therefore, in this paper, we compared Dijkstra's algorithm and $A^*$ algorithm for bicycle route selection. For this purpose, the horizontal distance according to slope angle and average speed were calculated based on factors which influence bicycle route selection. And bicycle routes were selected considering the shortest distance or time-dependent shortest path using Dijkstra's or $A^*$ algorithm. The result indicated that the $A^*$ algorithm performs faster than Dijkstra's algorithm on processing time in large study areas. For the future, optimal path selection algorithm can be used for bicycle route plan or a real-time mobile services.

Path Planning of a Mobile Robot Using RF Strength in Sensor Networks (센서 네트워크를 활용한 모바일 로봇의 Path Planning)

  • Wee, Sung-Gil;Kim, Yoon-Gu;Lee, Ki-Dong;Choi, Jung-Won;Park, Ju-Hyun;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.63-70
    • /
    • 2009
  • This paper proposes a novel path finding approach of a mobile robot using RF strength in sensor network. In the experiments based on the proposed method, a mobile robot attempts to find its location, heading direction and the shortest path in the indoor environment. The experimental system consisting of mesh network shares node data and send them to base station. The triangulation and the proposed Grid method calculate the location and heading angle of the robot. In addition, the robot finds the shortest path by using the base station attached on it to receive data of environment around each node. Kalman filter reduces the straight line error when the robot estimates the strength of received signal. The experimental results show the effectiveness of the proposed algorithm.

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

A fast shortest path algorithm for road networks having turn prohibitions (회전제한이 있는 도로망을 위한 고속 최적경로 알고리즘)

  • 성태경;명선영;홍원철
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.73-85
    • /
    • 1999
  • In metropolitan area, intersections having turn Prohibitions are often found and it is important to consider them in path planning. This Paper presents a new path planning method road networks having turn prohibitions. A new road network model is proposed in which an alter-native route for each turn-Prohibition is constructed in off-line using U-turn or P-turn and then Put into road network database. The proposed network model is efficient since it requires no virtual nodes that are usually used in the conventional road networks to represent turns at intersections. In order to find a shortest path with the proposed network, a new shortest path algorithm is proposed. A knot for the turn-Prohibited node is newly defined and is used in comparing the cost of the alternative route with that of the other path.

  • PDF