• 제목/요약/키워드: Shortest Path

검색결과 708건 처리시간 0.031초

운송 경로 손상을 고려한 트랜스포터의 최적 블록 운송 경로 계획 (Optimal Block Transportation Path Planning of Transporters considering the Damaged Path)

  • 허예지;차주환;조두연;송하철
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.298-306
    • /
    • 2013
  • Nowadays, a transporter manager plans the schedule of the block transportation by considering the experience of the manager, the production process of the blocks and the priority of the block transportation in shipyard. The schedule planning of the block transportation should be rearranged for the reflection of the path blocking cases occurred by unexpected obstacles or delays in transportation. In this paper, the optimal block transportation path planning system is developed for rearranging the schedule of the block transportation by considering the damaged path. $A^*$ algorithm is applied to calculate the new shortest path between the departure and arrival of the blocks transported through the damaged path. In this algorithm, the first node of the damaged path is considered as the starting position of the new shortest path, and then the shortest path calculation is completed if the new shortest path is connected to the one of nodes in the original path. In addition, the data structure for the algorithm is designed. This optimal block transportation path planning system is applied to the Philippine Subic shipyard and the ability of the rapid path modification is verified.

방향그래프의 점대점 최단경로 탐색 알고리즘 (A Point-to-Point Shortest Path Search Algorithm for Digraph)

  • 이상운
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.893-900
    • /
    • 2007
  • 본 논문은 실시간 GPS 항법시스템에서 최단 경로를 탐색하는데 일반적으로 적용되고 있는 Dijkstra 알고리즘의 문제점을 개선한 알고리즘을 제안하였다. Dijkstra 알고리즘은 출발 노드부터 시작하여 그래프의 모든 노드에 대한 최단 경로를 결정하기 때문에 일반적으로 노드의 수 - 1회를 수행해야 하며, 알고리즘 수행에 많은 메모리가 요구된다. 따라서 Dijkstra 알고리즘은 복잡한 도시의 도로에서 목적지 까지 최단 경로를 탐색하여 실시간으로 정보를 제공하지 못할 수도 있다. 이러한 문제점을 해결하고자, 본 논문에서는 먼저 출발과 목적지 노드를 제외한 경로 노드들의 최단 경로 (유입과 유출 최소 가중치 호 선택)를 결정하고, 출발 노드부터 시작하여 노드 유출 호들에 대해 경로 노드의 최단 경로와 일치하는 호들을 모두 선택하는 방식으로 한번에 다수의 노드들을 탐색하는 방법을 택하였다. 14개의 다양한 방향 그래프에 제안된 알고리즘을 적용한 결과 모두 최단 경로를 탐색하는데 성공하였다. 또한, 수행 속도 측면에서 Dijkstra 알고리즘보다 2배에서 3배 정도 빠른 결과를 얻었으며, 알고리즘 수행에 필요한 메모리도 적게 요구되었다.

퍼지 최단경로기법을 이용한 부대이동로 선정에 관한 연구 (A Study on Decision to The Movement Routes Using fuzzy Shortest path Algorithm)

  • 최재충;김충영
    • 한국국방경영분석학회지
    • /
    • 제18권2호
    • /
    • pp.66-95
    • /
    • 1992
  • Shortest paths are one of the simplest and most widely used concepts in deterministic networks. A decison of troops movement route can be analyzed in the network with a shortest path algorithm. But in reality, the value of arcs can not be determined in the network by crisp numbers due to imprecision or fuzziness in parameters. To account for this reason, a fuzzy network should be considered. A fuzzy shortest path can be modeled by general fuzzy mathematical programming and solved by fuzzy dynamic programming. It can be formulated by the fuzzy network with lingustic variables and solved by the Klein algorithm. This paper focuses on a revised fuzzy shortest path algorithm and an application is discussed.

  • PDF

다중 AGV의 이동시간과 작업시간을 고려한 고정 경로에서 충돌 회피 알고리즘 (Collision Avoidance Algorithms of Multiple AGV Running on the Fixed Runway Considering Running and Working Time)

  • 류강수
    • 한국멀티미디어학회논문지
    • /
    • 제21권11호
    • /
    • pp.1327-1332
    • /
    • 2018
  • An AGV(Automated Guided Vehicle) where is running on production automated system is related efficiency of production system similarly. On previous study proposed a path collision avoidance algorithms using shortest path of AGV. Running time about loading and unloading with shortest path of AGV is important factor to decide the production system efficiency. In this paper, we propose a method of shortest path and shortest time. Also propose the decision making method of collision avoidance position for setup a shortest runway for next command. To do verify the proposed method consist a simulation for AGV. Finally, we compare and analyse the proposed system between the existing system and show that our system can effectively the performance.

A Shortest Path Planning Algorithm for Mobile Robots Using a Modified Visibility Graph Method

  • Lee, Duk-Young;Koh, Kyung-Chul;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1939-1944
    • /
    • 2003
  • This paper presents a global path planning algorithm based on a visibility graph method, and applies additionally various constraints for constructing the reduced visibility graph. The modification algorithm for generating the rounded path is applied to the globally shortest path of the visibility graph using the robot size constraint in order to avoid the obstacle. In order to check the visibility in given 3D map data, 3D CAD data with VRML format is projected to the 2D plane of the mobile robot, and the projected map is converted into an image for easy map analysis. The image processing are applied to this grid map for extracting the obstacles and the free space. Generally, the tree size of visibility graph is proportional to the factorial of the number of the corner points. In order to reduce the tree size and search the shortest path efficiently, the various constraints are proposed. After short paths that crosses the corner points of obstacles lists up, the shortest path among these paths is selected and it is modified to the combination of the line path and the arc path for the mobile robot to avoid the obstacles and follow the rounded path in the environment. The proposed path planning algorithm is applied to the mobile robot LCAR-III.

  • PDF

게미트 사이징과 감작 경로를 이용한 클럭 주기 최적화 기법 (Clock period optimaization by gate sizing and path sensitization)

  • 김주호
    • 전자공학회논문지C
    • /
    • 제35C권1호
    • /
    • pp.1-9
    • /
    • 1998
  • In the circuit model that outputs are latched and input vectors are successively applied at inputs, the gate resizing approach to reduce the delay of the critical pathe may not improve the performance. Since the clock period is etermined by delays of both long and short paths in combinational circuits, the performance (clock period) can be optimized by decreasing the delay of the longest path, or increasing the delay of the shortest path. In order to achieve the desired clock period of a circuit, gates lying in sensitizable long and short paths can be selected for resizing. However, the gate selection in path sensitization approach is a difficult problem due to the fact that resizing a gate in shortest path may change the longest sensitizable path and viceversa. For feasible settings of the clock period, new algorithms and corresponding gate selection methods for resizing are proposed in this paper. Our new gate selection methods prevent the delay of the longest path from increasing while resizing a gate in the shortest path and prevent the delay of the shortest path from decreasing while resizing a gate in the longest sensitizable path. As a result, each resizing step is guaranteed not to increase the clock period. Our algorithmsare teted on ISCAS85 benchmark circuits and experimental results show that the clock period can beoptimized efficiently with out gate selection methods.

  • PDF

선호도 기반 최단경로 탐색을 위한 휴리스틱 융합 알고리즘 (A Combined Heuristic Algorithm for Preference-based Shortest Path Search)

  • 옥승호;안진호;강성호;문병인
    • 대한전자공학회논문지TC
    • /
    • 제47권8호
    • /
    • pp.74-84
    • /
    • 2010
  • 본 논문에서는 개미 군집 최적화 (Ant Colony Optimization; ACO) 및 A* 휴리스틱 알고리즘이 융합된 선호도 기반 경로탐색 알고리즘을 제안한다. 최근 ITS (Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 증가하면서 경로탐색 알고리즘의 중요성이 더욱 높아지고 있다. 기존의 Dijkstra 및 A*와 같은 대부분의 최단경로 탐색 알고리즘은 최단거리 또는 최단시간 경로 탐색을 목표로 한다. 하지만 이러한 경로 탐색 결과는 더 안전하고 특정 경로를 선호하는 운전자를 위한 최적의 경로가 아니다. 따라서 본 논문에서는 선호도 기반 최단 경로 탐색 알고리즘을 제안한다. 제안된 알고리즘은 주어진 맵의 링크 속성 정보를 이용하며, 각 링크에 대한 사용자 선호도는 내비게이션 사용자에 의해 설정되어 진다. 제안된 알고리즘은 C로 구현하였으며, 64노드 및 118링크로 구성된 맵에서 다양한 파라미터를 통해 성능을 측정한 결과 본 논문에서 제안한 휴리스틱 융합 알고리즘은 선호도 기반 경로뿐만 아니라 최단 경로 탐색에도 적합함을 알 수 있었다.

A Simple Shortest Path Algorithm for L-visible Polygons

  • Kim, Soo-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.59-63
    • /
    • 2010
  • The shortest path between two points inside a simple polygon P is a minimum-length path among all paths connecting them which don't pass by the exterior of P. A linear time algorithm for computing the shortest path in a general simple polygon requires triangulating a given polygon as preprocessing. The linear time triangulating is known to very complex to understand and implement it. It is also inefficient in case that the input without very large size is given because its time complexity has a big constant factor. Two points of a polygon P are said to be L-visible from each other if they can be joined by a simple chain of at most two rectilinear line segments contained in P completely. An L-visible polygon P is a polygon such that there is a point from which every point of P is L-visible. We present the customized optimal shortest path algorithm for an L-visible polygon. Our algorithm doesn't require triangulating as preprocessing and consists of simple procedures such as construction of convex hulls and operations for convex polygons, so it is easy to implement and runs very fast in linear time.

자동차형 로봇의 최단경로 계산을 위한 새로운 방법 (A New Method to Calculate a Shortest Path for a Car-Like Robot)

  • 조규상
    • 한국시뮬레이션학회논문지
    • /
    • 제12권1호
    • /
    • pp.11-19
    • /
    • 2003
  • Dubins showed that any shortest path of a car-like robot consists of exactly three path segment which are either arcs of circles of radius r(denoted C), or straight line segments(denoted S). Possible six types classified into two families, i.e. CSC and CCC. CSC includes 2 types(LRL and RLR) and CSC includes 4 types(LSL, RSR, LSR, RSL). This paper proposes new formulae for CSC family to find the shortest smooth path between the initial and final configurations of a car-like robot. The formulae is used for finding connection points explicitly between C\longrightarrowS and S\longrightarrowC which are necessary for real applications. The formulae have simple forms mainly because they are transformed into origin of their original coordinates of initial and target configuration, and derived from a standard forms which are a representative configuration of LSL and LSR type respectively. The proposed formulae, which are derived from the standard forms, are simple and new method.

  • PDF

자율주행로봇의 최소경로계획을 위한 그래프 탐색 방법 (A Graph Search Method for Shortest Path-Planning of Mobile Robots)

  • 유진오;채호병;박태형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.184-186
    • /
    • 2006
  • We propose a new method for shortest path planning of mobile robots. The topological information of the graph is obtained by thinning method to generate the collision-free path of robot. And the travelling path is determined through hierarchical planning stages. The first stage generates an initial path by use of Dijkstra's algorithm. The second stage then generates the final path by use of dynamic programming (DP). The DP adjusts the intial path to reduce the total travelling distance of robot. Simulation results are presented to verify the performance of the proposed method.

  • PDF