• 제목/요약/키워드: Short-term high exposure

검색결과 59건 처리시간 0.023초

철 과잉투여가 흰쥐의 Hepatic Fibrogenesis와 Collagen 및 TGF-$\beta$I 유전자 발현에 미치는 영향 (Influence of Collagen and TGF-$\beta$I Gene Expression and Hepatic Fibrogenesis by Iron Overload in Rat)

  • 양영목;박종환;이현영;정연희;김해영
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.307-313
    • /
    • 2001
  • Iron excess is known to affect long-term iron accumulation and tissue change such as fibrosis in liver. To determine the changes of expression level of genes associated with fibrosis by short-term iron exposure, we measured liver mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in rats fed dietary carbonyl iron (3%, wt/wt) for 9 weeks. The results showed that the expression of the collagen (I, III) and transforming growth factor (TGF)-$\beta$I mRNAs was enhanced in high-dose iron treated rat, compared to normal-dose iron treated rat. An electron microscopy study revealed that excess iron caused increase of collagen fibrils in liver. The cell shapes and compositions of hepatocytes and extracellular matrix(ECM) in liver were changed by the iron-treatment. Also, necrosised hepatocytes were broadly seen in ECM. Taken together, we suggest that iron overload affects changes of collagen and TGF-$\beta$I gene expression and these changes are associated with liver fibrogenesis.

  • PDF

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • 운동영양학회지
    • /
    • 제16권2호
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands

  • Hee-Su Kim;Yong-Pil Cheon;Sung-Ho Lee
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.213-220
    • /
    • 2023
  • Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • 강경호;권영수;송인영;박성해;박태호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Evaluation of Short-Term Exposure Levels on Ammonia and Hydrogen Sulfide During Manure-Handling Processes at Livestock Farms

  • Park, Jihoon;Kang, Taesun;Heo, Yong;Lee, Kiyoung;Kim, Kyungran;Lee, Kyungsuk;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.109-117
    • /
    • 2020
  • Background: Ammonia and hydrogen sulfide are harmful gases generated during aerobic/anaerobic bacterial decomposition of livestock manure. We evaluated ammonia and hydrogen sulfide concentrations generated from workplaces at livestock farms and determined environmental factors influencing the gas concentrations. Methods: Five commercial swine farms and five poultry farms were selected for monitoring. Real-time monitors were used to measure the ammonia and hydrogen sulfide concentrations and environmental conditions during the manure-handling processes. Monitoring was conducted in the manure storage facility and composting facility. Information on the farm conditions was also collected through interview and walk-through survey. Results: The ammonia concentrations were significantly higher at the swine composting facilities (9.5-43.2 ppm) than at other manure-handling facilities at the swine and poultry farms, and high concentrations of hydrogen sulfide were identified during the manure agitation and mixing process at the swine manure storage facilities (6.9-19.5 ppm). At the poultry manure-handling facilities, the ammonia concentration was higher during the manure-handling processes (2.6-57.9 ppm), and very low hydrogen sulfide concentrations (0-3.4 ppm) were detected. The air temperature and relative humidity, volume of the facility, duration of manure storage, and the number of animals influenced the gas concentrations. Conclusion: A high level of hazardous gases was generated during manure handling, and some levels increased up to risk levels that can threaten workers' health and safety. Some of the farm operational factors were also found to influence the gas levels. By controlling and improving these factors, it would be possible to protect workers' safety and health from occupational risks.

흡음재의 연소 생성물이 인체에 미치는 영향에 대한 실험적 연구 및 법률 개정 제언 (Experimental Study on the Effects of Combustion Products on the Human Body and Suggestion of Law Revision)

  • 강정기;최돈묵
    • 한국화재소방학회논문지
    • /
    • 제33권4호
    • /
    • pp.28-34
    • /
    • 2019
  • 점화원이 무엇이든 화염의 확산과 인체에 영향을 미치는 직접적인 요소는 가연물이다. 음악학원, 노래방 등에서 사용하고 있는 마감재인 흡음재는 폴리우레탄으로 구성되며 연소 시 다량의 유독가스를 발생한다는 것은 알려진 사실이다. 그럼에도 현행법은 학원의 경우 수용인원 100명 미만의 경우 난연 마감재를 사용해야 한다는 강행규정이 없다. 본 연구에서는 실제 음악학원에 설치된 흡음재를 수거하여 실화재 연소실험을 통해 화염확산 속도를 측정하였으며, MultiRaelite 복합가스 측정기(타겟물질 VOC, HCHO, SO2, CO2, CO, HCN, NO2)를 이용하여 유독가스를 측정한 결과 Time weighted average (TWA)와 Short term exposure limit (STEL)의 허용농도를 초과하여 기기한계값이 측정되었다. 또한 시중에 판매중인 난연 흡음재와 비난연 흡음재를 비교 연소 실험한 결과, 착화 및 확산에 있어 현격한 차이를 보였다. 따라서 실험결과를 바탕으로 수용인원 100명 미만의 학원에도 난연 마감재 사용을 강제할 필요가 있음을 제언하고자 한다.

공기중 수은 농도의 측정방법에 대한 비교평가연구 (A Comparative Evaluation of Sampling Methods for Airbone Mercury Concentration)

  • 박주영;김광종;백남원
    • 한국산업보건학회지
    • /
    • 제5권2호
    • /
    • pp.184-192
    • /
    • 1995
  • This study was performed to evaluate methods for determination of airbone mercury in industrial environments. Three methods, such as Hopcalite method, passive monitoring method and Jerome method were evaluated at two (2) fluorescent lamp manufacturing Plants in Korea during a period from May 24 to May 31, 1994 and the result are as follows: 1. The average were concentrations of airbone mercury were $26{\mu}g/m^3$ by Hopcalite method, $25{\mu}g/m^3$ by passive monitoring method, and $38{\mu}g/m^3$ by the Jerome method, respectively, which were below the permissible exposure limit of $50{\mu}g/m^3$ established by both the Korean Ministry of Labor and ACGIH. However, 12 out of 49 cases(24.4%) in plant A and 2 out of 31 cases(6.5%) in plant B were in excess of the standard. 2. The relationship between the results by Hopcalite method and the passive monitoring method was significant(r=0.892). 3. The variation among three results by eath of three methods were different by process. The highest variation was determined at quality control process("process b") which invoved in large variation of concentrations. 4. When short term high concentrations were produced, the Hopcalite method was more efficient then the passive method.

  • PDF

COVID-19 Pandemic and Dependence Structures Among Oil, Islamic and Conventional Stock Markets Indexes

  • ALQARALLEH, Huthaifa;ABUHOMMOUS, Alaa Adden
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.515-521
    • /
    • 2021
  • The popularity of Islamic financial instruments among Muslims is not surprising. The Islamic capital market is where sharia-compliant financial assets are transacted. It works parallel to the conventional market and helps investors find sharia-compliant investment opportunities. At a time of collective confusion when the COVID-19 epidemic is contributing to unprecedented change, this paper is keen to understand how attractive conventional and Islamic stock markets have been to investors recently. Second, this paper takes advantage of the time-scale decomposition property of the wavelet to simultaneously capture risk exposure and distinguish the risks faced by short- and long-term investors. To this end, this research conducted a two-step investigation of the daily closing equity market price indices for three Islamic stock markets and their conventional counterparts. Given that different financial decisions occur with greater or less frequency, the paper examines the connectedness of stock markets operating at heterogeneous rates and identifies the timescales using wavelet-DCC-GARCH analysis to take account of both the time and the frequency domains of stock market connectedness. The paper findings highlight the strong evidence of contagion that can be seen in nearly all conventional stock markets in the COVID-19 pandemic; they reach a high level of dependency in such health crises. Furthermore, Islamic stock markets prove to be a rich ground for global diversification.

EVALUATION OF GENETIC TOXICITY FROM ENVIRONMENTAL POLLUTANTS IN DAPHNIA MAGNA AND CHIRONOMUS TENTANS FOR APPLICATION IN ECOLOGICAL RISK ASSESSMENT

  • Park, Sun-Young;Lee, Si-Won;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • 제11권5호
    • /
    • pp.277-284
    • /
    • 2006
  • The genetic toxicity of environmental pollutants, namely, nonylphenol (NP), bisphenol A (BPA) and chloropyriphos (CP) was investigated in aquatic sentinel species, freshwater crustacean, Daphnia magna, and larva of aquatic midge, Chironomus tentans, using Comet assay. Physiological effect of such pollutants was also investigated by studying the specimens' rates of reproduction, growth and survival. Acute toxicity results showed that, as expected, Daphnia was more sensitive than Chironomus to chemical exposure. The order of acute toxicity was CP > NP > BPA in D. magna and NP > CP > BPA in C. tentans. BPA may exert a genotoxic effect on D. magna and C. tentans, given that DNA strand breaks increased in both species exposed to this compound, whereas NP- and CP-induced DNA damage occurred only in C. tentans. In vivo genotoxic data obtained in aquatic sentinel species could provide valuable information for freshwater quality monitoring. The experiments with NP-exposed D. magna showed that the pollutant has long-term effects on reproduction, whereas no short-term effect on DNA integrity was found, being an example of a false-negative result from the biomarkers perspective. This result could be interpreted that other mechanism than genetic alteration might be involved in NP-induced reproduction failure in D. magna. False-positive results from the genotoxic biomarker obtained in BPA-exposed D. magna and in NP-exposed C. tentans make it difficult to use DNA integrity as an early warning biomarker. However, as the mere presence of genotoxic compounds, which are potentially carcinogenic, is of high concern to human and ecosystem health, it could also be important to rapidly and effectively detect genotoxic compounds in the aquatic system in ways that do not necessarily accompany a higher level of alteration. Considering the potential of D. magna and C. tentans as bioindicator species, and the importance of genotoxic biomarkers in ecotoxicity monitoring, DNA damage in these species could provide useful information for environmental risk assessment.

시화호 내 수질 및 어패류의 중금속 분포 연구 (Concentration of Heavy Metals in Seawater, Fish, and Shellfish at Lake Shihwa)

  • 이규영;이승훈;오세훈;최민지;이용우
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.157-163
    • /
    • 2018
  • This study aims to determine the pollution levels of nine kinds of heavy metals (As, Cd, Cu, Cr, Hg, Mn, Ni, Pb, and Zn) in Lake Shihwa, which is susceptible to the inflow of pollutants, and the levels of heavy metal exposure in its fish and shellfish. Shihwa Lake's water quality did not exceed the short-term standard for protection of marine ecosystems, but concentrations of As, Cu, Cr, Hg, Ni, and Zn exceeded the long-term standard for protection of a marine ecosystem. In comparison to findings in prior research, performed in 2010, levels of Cr, Ni, As, and Zn are now 4.1 times lower. However, when compared to Saemangeum Lake, the environment is similar to that of Lake Shihwa, Cu, Ni, Hg, Mn, and Zn were 244.4 times higher. The levels of Pb, Cd, and Hg in fish's muscles did not exceed the average values set by the marine safety standard. However, when compared to the fish from the Korean coast, the levels of heavy metals were 9.7 times higher, on average. The levels of heavy metals in fish's livers were on average 26.8 times higher than in the muscles. In the case of shellfish, the levels of Pb, Cd, and Hg did not exceed the standard values, but in comparison to the shellfish from the south coast, the levels of heavy metals were 6.2 times higher on average. In particular, Mn (153.5 times higher) from fish and Cd (14.7 times higher) from shellfish were found in high amounts, indicating a concerning level of these specific heavy metals.