• Title/Summary/Keyword: Short-term creep rupture

Search Result 13, Processing Time 0.027 seconds

Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels (스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.

Characteristics of Short-Term Creep Rupture in STS304 Steels (STS304강의 단시간 크리프 파단특성 평가)

  • Kim, Seon-Jin;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

New Considerations on Variability of Creep Rupture Data and Life Prediction (크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

Creep Life Prediction of Type 316LN Steel Using Minimum Commitment Method (최소구속법을 이용한 Type 316LN 강의 크리프 수명 예측)

  • Kim W.G.;Yoon S.N.;Ryu W.S.;Yi W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • A minimum commitment method (MCM) was applied to predict the creep rupture life of type 316LN SS. For this purpose, a number of the creep rupture data for the type 316LN SS were collected through literature survey and experimental data of KAERl, Using the short-term creep rupture data under 2000 hr, the long-term creep rupture life above $10^5$ hour was predicted by means of the MCM. An optimum value of A, P and G function, used in the MCM equation, was determined respectively, and the creep rupture life with the A values in different temperatures was compared with the experimental data and the predicted curves.

  • PDF

Microstructural Evolution of X20CrMoV12.1 Steel upon Short-term Creep Rupture Test

  • Hino, Mariko;He, Yinsheng;Li, Kejian;Chang, Jungchel;Shin, Keesam
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.164-172
    • /
    • 2013
  • In this work, microstructural and hardness evolution of the X20 steel upon short-term creep test ($550^{\circ}C$ to $650^{\circ}C$, $180^{\circ}C$ to 60 MPa) was studied by using scanning electron microscope, electron backscattered diffraction, and transmission electron microscope, microhardness tester. After creep rupture, gauge and grip part of the specimens were microstructurally analyzed. Creep at the $650^{\circ}C$/60 MPa resulted in a rupture at 1,460 hours with growth of lath width from 1.31 to $2.87{\mu}m$ and a grain growth with a more equiaxed feature. There is a close relationship between Microhardness and lath width. The formation and coarsening of Laves phase, which was observed up to $600^{\circ}C$ of creep temperature, was accelerated by the applied stress. Slight coarsening of the $M_{23}C_6$ was observed in the $550^{\circ}C$ and $600^{\circ}C$ crept or aged specimens. The coarsening of $M_{23}C_6$ depended on the temperature, where specimens crept at $650^{\circ}C$ showed higher growth rate. The microstructural evolution of X20 after short-term creep test was extensively discussed in relation to the long-term creep/aging test reported in literatures.

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 Jointed by Friction Welding (마찰용접된 니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.58-63
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steels jointed by friction welding wasinvestigated at the elevated temperatures of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture time and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 26.1, -22.4, 22.5, -18.5, 17.4, -14.3 and 6.9, -8.1, respectively. The stress exponents decreased with increasing creep temperature. The creep life prediction was derived by the Larson-Miller parameter (LMP) method and the result equation obtained is as follows: T(logtr+20)=-0.00148${\sigma}^2$-3.089${\sigma}$+23232. Finally, the results were compared with those of the base metal for Alloy718.

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 (니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.52-57
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steel was investigated at the elevated temperatures range of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture tim and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 33.5, -24.9, 26.1, -21.2, 16.8, -12.8 and 10, -8.2, respectively. The stress exponent decreased with increasing creep temperature. The creep lift prediction was derived by the Larson-Miller parameter (LMP) method and the resultant equation was obtained as follows: T($logt_r$+20)=-0.00252 ${\sigma}^2$-1.377${\sigma}$+-22718.

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul;Han, Sangbae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.917-925
    • /
    • 2022
  • Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger (초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링)

  • Kim, Woo-Gon;Yin, Song-Nam;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.