• Title/Summary/Keyword: Short-term Memory

Search Result 743, Processing Time 0.024 seconds

Non-Intrusive Speech Intelligibility Estimation Using Autoencoder Features with Background Noise Information

  • Jeong, Yue Ri;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2020
  • This paper investigates the non-intrusive speech intelligibility estimation method in noise environments when the bottleneck feature of autoencoder is used as an input to a neural network. The bottleneck feature-based method has the problem of severe performance degradation when the noise environment is changed. In order to overcome this problem, we propose a novel non-intrusive speech intelligibility estimation method that adds the noise environment information along with bottleneck feature to the input of long short-term memory (LSTM) neural network whose output is a short-time objective intelligence (STOI) score that is a standard tool for measuring intrusive speech intelligibility with reference speech signals. From the experiments in various noise environments, the proposed method showed improved performance when the noise environment is same. In particular, the performance was significant improved compared to that of the conventional methods in different environments. Therefore, we can conclude that the method proposed in this paper can be successfully used for estimating non-intrusive speech intelligibility in various noise environments.

Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control (뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어)

  • 최진영;박현주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 1998
  • This paper presents an adaptive learning control method for unknown nonlinear systems by combining neuro control and iterative learning control techniques. In the present control system, an iterative learning controller (ILC) is used for a process of short term memory involved in a temporary adaptive and learning manipulation and a short term storage of a specific temporary action. The learning gain of the iterative learning law is estimated by using a neural network for an unknown system except relative degrees. The control informations obtained by ILC are transferred to a long term memory-based feedforward neuro controller (FNC) and accumulated in it in addition to the previously stored infonnations. This scheme is applied to a two link robot manipulator through simulations.

  • PDF

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

Groundwater Level Prediction using ANFIS Algorithm (딥러닝을 이용한 하천 유량 예측 알고리즘)

  • Bak, Gwi-Man;Oh, Se-Rang;Park, Geun-Ho;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1239-1248
    • /
    • 2021
  • In this paper, we present FDNN algorithm to perform prediction based on academic understanding. In order to apply prediction based on academic understanding rather than data-dependent prediction to deep learning, we constructed algorithm based on mathematical and hydrology. We construct a model that predicts flow rate of a river as an input of precipitation, and measure the model's performance through K-fold cross validation.

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.

Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube

  • Jang, Daeik;Bang, Jinho;Yoon, H.N.;Seo, Joonho;Jung, Jongwon;Jang, Jeong Gook;Yang, Beomjoo
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.301-310
    • /
    • 2022
  • Cement-based sensors have been widely used as structural health monitoring systems, however, their long-term sensing performance have not actively investigated. In this study, a deep learning-based methodology is adopted to predict the long-term piezoresistive properties of cement-based sensors. Samples with different multi-walled carbon nanotube contents (0.1, 0.3, and 0.5 wt.%) are fabricated, and piezoresistive tests are conducted over 10,000 loading cycles to obtain the training data. Time-dependent degradation is predicted using a modified long short-term memory (LSTM) model. The effects of different model variables including the amount of training data, number of epochs, and dropout ratio on the accuracy of predictions are analyzed. Finally, the effectiveness of the proposed approach is evaluated by comparing the predictions for long-term piezoresistive sensing performance with untrained experimental data. A sensitivity of 6% is experimentally examined in the sample containing 0.1 wt.% of MWCNTs, and predictions with accuracy up to 98% are found using the proposed LSTM model. Based on the experimental results, the proposed model is expected to be applied in the structural health monitoring systems to predict their long-term piezoresistice sensing performances during their service life.

Design and Implementation of a Behavior-Based Control and Learning Architecture for Mobile Robots (이동 로봇을 위한 행위 기반 제어 및 학습 구조의 설계와 구현)

  • 서일홍;이상훈;김봉오
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.527-535
    • /
    • 2003
  • A behavior-based control and learning architecture is proposed, where reinforcement learning is applied to learn proper associations between stimulus and response by using two types of memory called as short Term Memory and Long Term Memory. In particular, to solve delayed-reward problem, a knowledge-propagation (KP) method is proposed, where well-designed or well-trained S-R(stimulus-response) associations for low-level sensors are utilized to learn new S-R associations for high-level sensors, in case that those S-R associations require the same objective such as obstacle avoidance. To show the validity of our proposed KP method, comparative experiments are performed for the cases that (ⅰ) only a delayed reward is used, (ⅱ) some of S-R pairs are preprogrammed, (ⅲ) immediate reward is possible, and (ⅳ) the proposed KP method is applied.

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

The effect of learning stress and reward style on short- and long-term memory performance (학습 스트레스의 수준 및 제공되는 보상 조건의 차이가 단기 및 장기 기억의 수행에 미치는 영향)

  • Jung, Juyoun;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.527-540
    • /
    • 2012
  • We examined the effect of delayed and immediate rewards on short- and long-term memory performance depending on the level of stress. It has been demonstrated that delaying feedback during memory tasks could lead to better retention than presenting it immediately (a.k.a., feedback delay benefit or delay-retention effect). In this study, we manipulated stress level(high-stress or low-stress), reward-timing(delayed or immediate reward), reward-existence(500 or 0 won) and retrieval-timing(delayed or immediate memory test). On the high-stress learning condition, one week later, the number of correct answers with delayed-rewards were significantly more than that of delayed-no-rewards but there was not any difference between immediate-rewards and immediate-no-rewards. On the other hand, in the high-stressful immediate memory test, immediate-rewards only had a positive effect on memory performance. The results indicated that delayed rewards improved long-term memory performance by promoting memory consolidation and the sensitivity to rewards was higher under the high-stress condition.

  • PDF

Attributes and Expression of STM(Short-term Memorable) Information (STM(Short-term Memorable) Information의 속성 및 정보표현)

  • Han, Ji-Ae;You, Si-Cheon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.201-211
    • /
    • 2010
  • The aim of this study is to investigate the method to enhance user cognition for "STM information(Short-term Memorable Information)" that is relatively accessible to information in a short period of time in information design types. What stands out from this study is the design attributes and expression method of information in a broad perspective. By 4 visualization attributes of function variable; 'Operations', 'Events', 'Methods' and 'Use cases', STM information should be satisfied by the attribute of 'Understandable' and 'Accessibility' from the point of view of visual representation and by the attribute of 'Errorless' and 'Timeliness' from the point of view of user operation. As the expression method of each perspectives, I suggested "Attribution theory", "Cognitive model", "Maximization of Proactivity", "Minimization of surplus information" and "Using dual-code" in the point of view of visual representation, and "Context effect", "Using memory code" and "Two methods of information scanning" in the point of view of user operation. I assured that above-mentioned methods are efficient and cognitive pattern of user for STM information is found out by survey and interview.