• 제목/요약/키워드: Short-chain fatty acids

검색결과 171건 처리시간 0.026초

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

식이 레반과 이눌린이 흰쥐의 장내 유산균 성장 및 장내환경에 미치는 영향 (The Effects of Levan and Inulin on the Growth of Lactic Acid-Producing Bacteria and Intestinal Conditions in Rats)

  • 장기효;강순아;조윤희;김윤영;이윤정;홍경희;장은경;김철호;조여원
    • Journal of Nutrition and Health
    • /
    • 제35권9호
    • /
    • pp.912-918
    • /
    • 2002
  • In nature, two different types of fructose polymers (fructan) are generally found in dietary fibers; these are the fructose homopolymers levan, which is of high molecular weight and is $\beta$-(2,6)-linked, and inulin, which is of low molecular weight and is $\beta$-(2,1)-linked. The effects of levan and inulin on the intestinal physiology of rats were compared. Sprague Dawley rats were fed one of three diets for 3 weeks: a control diet, a basal diet containing 7% of levan, and a basal diet containing 7% of inulin. Cecal enlargement, together with the lowering of cecal pH, occurred in rats fed on the levan and inulin diets (p < 0.05). The levan and inulin diets resulted in a two-fold increase in the amount of short-chain fatty acids in the cecum, when compared to the control diet. The number of total microbes and of lactic acid-producing bacteria in the feces were higher in rats fed the fructan diets than those in rats fed control diet (p < 0.05). The levan diet also significantly increased the cecal $\alpha$-galactosidase activity by 3.8-fold, when compared to the control diet, indicating that levan stimulated the growth of Bifidobacteria in the cecum. These results show that the intake of levan and inulin stimulated the growth of lactic acid-producing bacteria in the cecum and thereby improved intestinal conditions in rats. (Korean J Nutrition 35(9) : 912~918,2002)

Growth Performance and Post-Weaning Diarrhea in Piglets Fed a Diet Supplemented with Probiotic Complexes

  • Lu, Xuhong;Zhang, Ming;Zhao, Liang;Ge, Keshan;Wang, Zongyi;Jun, Luo;Ren, Fazheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1791-1799
    • /
    • 2018
  • Weaning stress can affect the growth performance and intestinal health of piglets. Dietary alternatives to antibiotics, such as dietary probiotics, especially those containing multiple microbial species, are a preventive strategy for effectively controlling post-weaning diarrhea. In this study, we investigated forty-eight crossbred piglets in three treatment groups for 21 days: the control and experimental groups were supplemented with Enterococcus faecium DSM 7134, Bacillus subtilis AS1.836 plus Saccharomyces cerevisiae ATCC 28338 (EBS) or Lactobacillus paracasei L9 CGMCC No. 9800 (EBL). On day 21, weaned piglets supplemented with two kinds of probiotic complexes showed increased growth performance and significantly reduced post-weaning diarrhea (p < 0.05). The EBS treatment increased acetic acid and propionic acid in the feces (p < 0.05), and the EBL treatment increased fecal acetic acid, propionic acid, butyrate and valerate (p < 0.05). Moreover, the fecal microbiota of the piglets changed markedly in EBL treatment. The addition of EBS and EBL may have similar effects on the prevention of diarrhea by improving the intestinal morphology and regulating the microbiota during the weaning period.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권10호
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

Comparison of Physicochemical and Sensory Properties between Cholesterol-removed Gouda Cheese and Gouda Cheese during Ripening

  • Jung, Ho-Jung;Ko, Eun-Jung;Kwak, Hae-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권12호
    • /
    • pp.1773-1780
    • /
    • 2013
  • This study was performed to compare physicochemical and sensory properties of cholesterol-removed Gouda cheese (CRGC) and Gouda cheese made in the laboratory during ripening. Composition, short-chain free fatty acids (SCFFA), texture, color, and sensory properties were measured. In chemical composition analyses, moistures were significantly different between control cheeses (42.86%) and sample cheese (48.32%) (p<0.05). But fat and protein in the control and the sample were 32.77, 22.45 and 31.35, 20.39%, respectively, and were not significantly different (p>0.05). The amount of cholesterol in control was 82.52 mg/100 g and the percentage of cholesterol removal was 90.7%. SCFFA increased gradually during ripening and its level of CRGC increased and significantly different from that of control (p<0.05). The texture, hardness, gumminess, and chewiness were significantly increased, but cohesiveness and springiness were not increased in both cheeses during ripening periods (p>0.05). In comparison of the control and sample cheeses, hardness, and springiness were not significantly different, but cohesiveness, gumminess, and chewiness were different (p<0.05). In color measurement, all color values were not different between CRGC and control (p>0.05). However, $L^*$ value decreased, while $a^*$ and $b^*$ values tended to increase significantly (p<0.05). In sensory properties, appearance, aroma, flavor and taste, and texture were significantly increased except buttery and nutty in aroma and sweetness in taste in both cheeses, and were not significantly different between the control and sample cheeses during ripening (p>0.05). Therefore, this study suggests that the quality of cholesterol-removed Gouda cheese is not different from the control cheese.

Effect of Crosslinked β-cyclodextrin on Quality of Cholesterol-reduced Cream Cheese

  • Kim, Song-Hee;Han, Eun-Mi;Ahn, Joungjwa;Kwak, Hae-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.584-589
    • /
    • 2005
  • This study was carried out to investigate the effects of different types of $\beta$-cyclodextrin ($\beta$-CD) treatments on chemical and sensory characteristics of cholesterol-reduced cream cheese. The cholesterol removal rates were 92.0% in cream cheese treated by powder $\beta$-CD, and 82.6% in cream cheese treated by crosslinked $\beta$-CD. Amounts of short-chain fatty acid and free amino acids were significantly lower in cream cheese made by crosslinked $\beta$-CD-treated milk, especially after 2 weeks storage, compared with those of no $\beta$-CD-treated control and cream cheese made by powder $\beta$-CD treated milk. Among rheological properties, cohesiveness was significantly higher, and gumminess in cream cheese made by crosslinked $\beta$-CD-treated milk was slightly lower than others. In sensory analysis, no difference was found in texture among treatments, while bitterness was lower in the early stage of storage, and overall quality was higher score, in cream cheese made by crosslinked $\beta$-CD-treated cream at 3 and 4 week storage, compared with those in control and powder $\beta$-CD-treated group. The present study indicated that crosslinked $\beta$-CD treatment resulted in an efficient cholesterol removal rate over 80% and a deceleration of ripening, which may provide a longer shelf life without significant adverse effects in chemical and sensory properties.

미생물에서 추출된 Lipase의 유지방 분해 (Studies on the Hydrolysis of Milk Fat by Microbial Lipases)

  • 박종학;이영춘
    • 한국식품과학회지
    • /
    • 제17권2호
    • /
    • pp.60-64
    • /
    • 1985
  • 미생물에서 추출된 lipase를 유지방분해에 이용하기 위한 기초연구로서 Rhizopus delemar, Mucor sp. 및 Candida cylindracea에서 추출된 3중의 lipases를 유지방분해에 적합한 반응조건을 설정하고, 이들의 반응 특이성을 연구한 결과는 다음과 같다. 최적온도 및 최적pH는 Rhizopus delemar lipases가 $45^{\circ}C$, pH5.6 Mucor sp. lipases가 $35^{\circ}C$, pH7.5였으며, Candida cylindracea lipase는 $35^{\circ}C$, pH 7.0 이었다. 유지방에 대한 적정효소농도는 3종의 lipase 모두 $600{\sim}800\;units/ml$였다. 적정기질농도는 효소의 종류에 관계없이 유지방함량 20%였으며, 이들의 Km값은 R. delemar lipase가 6.06%, M sp. lipase가 7.69%, Can. cylindracea lipase가 7.99%였다. 반응시간에 따른 반응율을 조사한 결과 R. delemar lipase, M. sp. lipase, Can. cylindracea lipase순으로 높았으며 반응시간이 진행됨에 따라 저급지방산의 분해율이 높아졌으며, 반응 8시간에서는 R. delemar lipase는 butylic acid, M. sp. lipase는 palmitic acid, Can. cylindracea lipase는 Capric acid의 함량이 높았다.

  • PDF

식품 중 식이섬유(Dietary fiber)의 의미와 기능성 고찰 -식이섬유의 특성과 기능을 중심으로- (Gerneral concept of dietary fiber and it's functionality)

  • 신동화
    • 식품과학과 산업
    • /
    • 제52권1호
    • /
    • pp.84-99
    • /
    • 2019
  • Dietary fiber is defined as soluble and insoluble polysaccharide consisted in the plant cell wall-associated fibers naturally occurring in fruits, vegetables, and cereal products, and of isolated fibers that are added to processed foods which are also artificially modified. There are so many difference types of dietary fibers as arabinoxylan, polydextrose chicory, oligosccharide. inulin, pectin, bran, cellulose, ${\beta}$-glucan, resistant starch and some seaweed polymers as alginate. Most of them provide many biological benefits in the intestine, as lower risk for developing coronary heart disease, stroke, hypertension, diabetes, obesity and some of the gastrointestinal disease like as colon cancer. And also lowering cholesterol levels, improves glycemic and insulin sensitivity to non-diabetic and diabetic persons including immune system. Beside of many benefits, average consumers in developed and under developing countries take far less amounts of dietary fiber that international organization recommended. Adequate intake of dietary fiber is 14g/1,000kcal base using the energy guide line of 2,000kcal/day for women and 26,000 kcal/day for men, dietary intake is 28g/day of adult women and 36g/day for adult men. The mechanisms behind the reported effects of dietary fiber on metabolic health are not fully well established. It is suggested that changes in intestinal viscosity resulting mucus increasing, macro-nutrients absorption, rate of passage of large intestinal, production of short chain fatty acids by fermentation. Production of gut hormones and changes of microbiota in intestine. It is necessary to do more research in this field in the future and combined interdisciplinary works together.

Purification, Characterization and Immobilization of Lipase from Proteus vulgaris OR34 for Synthesis of Methyl Oleate

  • Misbah, Asmae;Koraichi, Saad Ibnsouda;Jouti, Mohamed Ali Tahri
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.491-505
    • /
    • 2020
  • A newly isolated strain, Proteus vulgaris OR34, from olive mill waste was found to secrete an alkaline extracellular lipase at 11 U·ml-1 when cultivated on an optimized liquid medium. This lipase was purified 94.64-fold with a total yield of 9.11% and its maximal specific activity was shown to be 3232.58 and 1777.92 U·mg-1 when evaluated using the pH-stat technique at 55℃ and pH 9 and Tributyrin TC4 or olive oil as the substrate. The molecular mass of the pure OR34 lipase was estimated to be around 31 kDa, as revealed by SDS-PAGE and its substrate specificity was investigated using a variety of triglycerides. This assay revealed that OR34 lipase preferred short and medium chain fatty acids. In addition, this lipase was stable in the presence of high concentrations of bile salt (NaDC) and calcium ions appear not to be necessary for its activity. This lipase was inhibited by THL (Orlistat) which confirmed its identity as a serine enzyme. In addition, the immobilization of OR34 lipase by adsorption onto calcium carbonate increased its stability at higher temperatures and within a larger pH range. The immobilized lipase exhibited a high tolerance to organic solvents and retained 60% of its activity after 10 months of storage at 4℃. Finally, the OR34 lipase was applied in biodiesel synthesis via oleic acid mediated esterification of methanol when using hexane as solvent. The best conversion yield (67%) was obtained at 12 h and 40℃ using the immobilized enzyme and this enzyme could be reused for six cycles with the same efficiency.

전분 유래 저열량 식품소재의 개발과 산업적 이용 (Development and industrial application of low-calorie food ingredients derived from starches)

  • 정현정
    • 식품과학과 산업
    • /
    • 제52권4호
    • /
    • pp.358-374
    • /
    • 2019
  • 소비자들은 건강에 관한 관심이 계속 증가할 것이며 이에 저열량 식품에 대한 요구에 부응하는 소재의 개발이 필요하다. 저열량 식품소재의 개발에 있어 열량을 낮춘 소재의 기능성과 최종제품의 품질을 잘 유지할 수 있는 관능성이 중요하다. 이에 난소화성 전분과 난소화성 말토덱스트린은 이러한 필요를 충족시킬 수 있는 소재이며 일반 식이섬유보다 다양한 제품에 품질을 자유롭게 조절할 수 있는 장점이 있다. 난소화성 전분은 입자가 작고 색이 하얗고 특별한 냄새와 맛이 없기에 제빵, 파스타, 시리얼, 스낵 제품 등에 식이섬유 함량을 높이거나 제품의 품질을 향상하는데 저열량 소재로 사용되고 있고 난소화성 말토덱스트린은 식후혈당 상승억제, 혈중 중성지방 개선, 배변 활동 원활하게 하는 기능성 원료이기에 음료, 건강보조식품, 일반 식품에서 저열량 소재로 많이 활용되고 있으며 앞으로도 다양한 저열량 식품에 소재로 활용될 것이다.