• Title/Summary/Keyword: Short-chain fatty acids

Search Result 171, Processing Time 0.026 seconds

Optimization of Ceramide Analysis Method Using LC-MS in Cosmetics

  • Su-Jin Park;Hee-Jin Yoo;Duck-Hyun Kim;Ji-Won Park;Eunji Jeon;Abhik Mojumdar;Kun Cho
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.49-53
    • /
    • 2024
  • Ceramide is a lipid in which sphingoid bases and fatty acids are linked by amide bonds. As a marker of skin disease in the human stratum corneum, its disease-causing and therapeutic effects have been partially confirmed, and it is therefore an important element in commercially available cosmetic formulations. However, structural diversity caused by differences in the chain length, number, and location of hydroxyl groups makes quality control difficult. In this study, a method was established to separate different ceramide species using reversed-phase LC-MS/MS and thus enable qualitative evaluation. Separation of four standards was achieved within a short retention time, and the accuracy and sensitivity of the method were demonstrated by the low limit of detection (LOD) calculated based on the calibration curve showing linearity, with R2 > 0.994. After verification of reproducibility and reliability through intra- and inter-day analyses, the efficiency of the method was confirmed through analysis of commercial cosmetic raw materials.

A Case of Short-chain Acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening

  • Park, Kyungwon;Ko, Jung Min;Jung, Goun;Lee, Hee Chul;Yoon, So Young;Ko, Sun Young;Lee, Yeon Kyung;Shin, Son Moon;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.40-43
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive mitochondrial disorder of fatty acid oxidation associated with mutations in the ACADS gene. While patients diagnosed clinically have a variable clinical presentation, patients diagnosed by newborn screening are largely asymptomatic. We describe here the case of a 1-year-old male patient who was detected by newborn screening and diagnosed as SCAD deficiency. Spectrometric screening for inborn errors of metabolism at 72hrs after birth showed elevated butyrylcarnitine (C4) level of 1.69 mol/L (normal, <0.83 mol/L), C4/C2 ration of 0.26 (normal, <0.09), C5DC+C60H level of 39 mol/L (normal, <0.28 mol/L), and C5DC/C8 ration of 7.36 (normal, <4.45). The follow-up testing at 18 days of age were performed: liquid chromatography tandem mass spectrometry (LC-MS/MS), urine organic acids, and quantitative acylcarnitine profile. C4 carnitine was elevated as 0.91; urine organic acid analysis showed elevated ethylmalonic acid as 62.87 nmol/molCr (normal, <6.5), methylsuccinate 6.81 nmol/molCr (normal, not detected). Sequence analysis of ACADS revealed a homozygous missense mutation, c.164C>T (p.Pro55Leu). He is growing well and no episodes of seizures or growth retardation had occurred.

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminalia japonicus by Thermal Decomposition 7. Effects of Depolymerized Alginate on Fecal Composition in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 7. 저분자 Alginate에 의한 랫드 분변의 성분 변화)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.84-90
    • /
    • 2001
  • This study was performed to know the effect of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on intestinal environment, Rats were fed with diets containing $1\%$, $5\%$, and $10\%$ of each depolymerized alginate (HAG-10, HAG-50, HAG-100 and alginate) for 35 days, The changes of weight, moisture content, pH and volatile basic nitrogen (VBN) of fecal, and a short chain fatty acids (SCFA) were checked in the rats. The fecal weight and moisture content were the highest in rats fed with alginate diets (p<0.01), followed by HAG-100, HAG-50 and HAG-10 in order. The $5\%$ of HAG-50 diets induced a significant increase in contents of protein and lipid of feces, resulting in the decrease of apparent digestibility of protein and lipid (p<0.01). The pH and VBN content in feces of the rats decreased in $5\%$ and $10\%$ of HAG-50 diets, but $10\%$ of HAG-100 diets; $5\%$ and $10\%$ of alginate diets brought about an increase of fecal pH and VBN (p<0.01), The amount of n-butyric acid in feces was increased while propionic and acetic acid contents decreased significantly (p<0.01) in diets containing $5\%$ and $10\%$ HAG-50. However, the feces of rat fed diet containing $5\%$ and $10\%$ alginate showed a tendency to being opposite in results than that of HAG-50.

  • PDF

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).

Physiological Characteristics of Resistant Starch (HI-MAIZE DIET) Fortified with Other Dietary Fiber Components (식이섬유의 기능이 강화된 저항전분 (HI-MAIZE DIET)의 생리적 특성)

  • Choi, Yang-Mun;Oh, Sung-Hoon;Yu, Kwang-Won;Shin, Kwang-Soon;Ra, Kyung-Soo;Park, Chul-Soo;Kim, Kyung-Mi;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.351-355
    • /
    • 2005
  • This study was performed to investigate the influences of resistant starch (HM: HI-MAIZE) and HM-D (HI-MAIZE DIET) fortified with D-factor (consisted of Psyliium husk, polydextrose and hydrocitric acid) on the glucose and bile acid absorption and production of short chain fatty acids (SCFA). HM-D absorbed more glucose and bile acid than did HM. The glucose transport of HM and HM-D against dialysis membrane showed 77% and 68% for 4h, respectively. After 24h, bile acid transport of HM and HM -D showed 65% and 62.3%, respectively. The HM and HM-D produced 217.8 mM and 264.0mM of SCFA, respectively. The production of butyric acid in HM-D (32.7mM) showed higher than that of HM (26.9mM). The addition of D-factor to HM increased the physiological function of dietary fiber through the glucose and bile acid absorption and production of SCFA.

Water Extract of Ecklonia cava Protects against Fine Dust (PM2.5)-Induced Health Damage by Regulating Gut Health

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Kim, Min Ji;Lee, Hyo Lim;Moon, Jong Hyun;Jeong, Hye Rin;Kim, Hyun-Jin;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.927-937
    • /
    • 2022
  • To confirm the therapeutic effect of the water extract from Ecklonia cava (WEE) against PM2.5 induced systemic health damage, we evaluated gut health with a focus on the microbiota and metabolites. Systemic damage in mice was induced through PM2.5 exposure for 12 weeks in a whole-body chamber. After exposure for 12 weeks, body weight and food intake decreased, and WEE at 200 mg/kg body weight (mpk) alleviated these metabolic efficiency changes. In addition, PM2.5 induced changes in the length of the colon and fecal water content. The administration of the WEE at 200 mpk oral dose effectively reduced changes in the colon caused by PM2.5 exposure. We also attempted to confirm whether the effect of the WEE is mediated via regulation of the microbiota-gut-brain axis in mice with PM2.5 induced systemic damage. We examined changes in the fecal microbiota and gut metabolites such as short-chain fatty acids (SCFAs) and kynurenine metabolites. In the PM2.5 exposed group, a decrease in the abundance of Lactobacillus (Family: Lactobacillaceae) and an increase in the abundance of Alistipes (Family: Rikenellaceae) were observed, and the administration of the WEE showed a beneficial effect on the gut microbiota. In addition, the WEE effectively increased the levels of SCFAs (acetate, propionate, and butyrate). Furthermore, kynurenic acid (KYNA), which is a critical neuroprotective metabolite in the gut-brain axis, was increased by the administration of the WEE. Our findings suggest that the WEE could be used as a potential therapeutic against PM2.5 induced health damage by regulating gut function.

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

Use of Prebiotics, Probiotics and Synbiotics in Clinical Immunonutrition

  • Bengmark, Stig
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.332-345
    • /
    • 2002
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. In addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, poly-amines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300,000 genes, which is much more than the calculated about 60,000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa- associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

Effect of Livestock Wastewater Addition on Hydrogen and Organic Acids Production Using Food Waste (음식물쓰레기 이용 혐기 산발효에 의한 수소 및 유기산 생산: 축산폐수 첨가 효과)

  • JANG, SUJIN;KIM, DONGHOON;LEE, MOKWON;NA, JEONGGEOL;KIM, MISUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • Organic wastes such as food waste (FW), livestock wastewater (LW), and sewage sludge (SWS) can produce hydrogen ($H_2$) by anaerobic acid fermentation. Expecially, FW which has high carbohydrate content produces $H_2$ and short chain fatty acids by indigenous $H_2$ producing microorganisms without adding inoculum, however $H_2$ production rate (HPR) and yield have to be improved to use a commercially available technology. In this study, LW was mixed to FW in different ratios (on chemical oxygen demand (COD) basis) as an auxiliary substrate. The mixture of FW and LW was pretreated at pH 2 using 6 N HCl for 12 h and then fermented at $37^{\circ}C$ for 28 h. HPR of FW, 254 mL $H_2/L/h$, was increased with the addition of LW, however, mixing ratio of LW to FW was reversely related to HPR, exhibiting HPR of 737, 733, 599, and 389 mL $H_2/L/h$ at the ratio of FW:LW=10:1, 10:2, 10:3, and 10:4 on COD basis, respectively. Maximum HPR and $H_2$ production yield of 737 $H_2/L/h$ and 1.74 mol $H_2/mol$ hexoseadded were obtained respectively at the ratio of FW:LW=10:1. Butyrate was the main organic acid produced and propionate was not detected throughout the experiment.

Comparison of Cholesterol-reduced Cream Cheese Manufactured Using Crosslinked β-Cyclodextrin to Regular Cream Cheese

  • Han, E.M.;Kim, S.H.;Ahn, J.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.131-137
    • /
    • 2008
  • The objective of the present study was to compare the chemical and sensory properties of regular cream cheese (control) and cholesterol-reduced cream cheese manufactured using crosslinked ${\beta}$-cyclodextrin (${\beta}$-CD) or powdered ${\beta}$-CD. Crosslinked ${\beta}$-CD was made using adipic acid. The composition of cream cheese treated by the crosslinked ${\beta}$-CD was similar to the regular cream cheese. Approximately 91% of cholesterol-reduction was observed in the cheeses that were treated using ${\beta}$-CD, which was not significantly different between powdered vs. crosslinked ${\beta}$-CD treatments. Total amount of short-chain free fatty acids was significantly lower in both ${\beta}$-CD-treated cheeses than in the control cheese throughout the storage. The cheeses made by ${\beta}$-CD-treated cream produced much lower amounts of individual free amino acids than the control in all periods. Most rheological characteristics, except cohesiveness, decreased dramatically in the control compared with the cholesterol-reduced cream cheeses. In sensory attributes, both wateryness and spreadability in ${\beta}$-CD-treated cheeses were significantly higher than in the control during 8 wk storage. Sensory scores for sourness increased significantly in the control from 4 to 8 wk storage, however, those in the cream cheese made by crosslinked-${\beta}$-CD treated cream increased slowly during 8 wk storage, which was shown in the control during a 4 wk period. Therefore, the present study showed the possibility of cholesterol-reduced cream cheese manufacture.