This paper is described the concepts and limitations for the traditional directional design hour volume estimation. The main objective of this paper is to establish an estimation method of probabilistic directional design hour volume in order to improve the limitation for the traditional approach method. To express the traffic congestion of specific road segment, this paper proposed the link travel time as the probability that the road capacity can accommodate a certain traffic demand at desired service level. Also, the link travel time threshold was derived from chance-constrained stochastic model. Such successive probabilistic process could determine optimal ranked design hour volume and directional design hour volume. Therefore, the probabilistic directional design hour volume can consider the traffic congestion and economic aspect in road planning and design stage. It is hoped that this study will provide a better understanding of various issues involved in the short term prediction of directional design hourly volume on different types of roads.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.3
/
pp.28-37
/
2020
This study developed a deep learning model that predicts rental demand for public bicycles. For this, public bicycle rental data, weather data, and subway usage data were collected. After building an exponential smoothing model, ARIMA model and LSTM-based deep learning model, forecasting errors were compared and evaluated using MSE and MAE evaluation indicators. Based on the analysis results, MSE 348.74 and MAE 14.15 were calculated using the exponential smoothing model. The ARIMA model produced MSE 170.10 and MAE 9.30 values. In addition, MSE 120.22 and MAE 6.76 values were calculated using the deep learning model. Compared to the value of the exponential smoothing model, the MSE of the ARIMA model decreased by 51% and the MAE by 34%. In addition, the MSE of the deep learning model decreased by 66% and the MAE by 52%, which was found to have the least error in the deep learning model. These results show that the prediction error in public bicycle rental demand forecasting can be greatly reduced by applying the deep learning model.
Because of the rapid development of computer technology in recent years, wave models can utilize parallel calculations for the high-resolution prediction of open sea and coastal areas with high accuracy. Parallel calculations also allow national agencies in the relevant sectors to produce marine forecasting data through massive parallel calculations. Meanwhile, the eastern coast of the Korean Peninsula has been increasingly damaged by swell-like high waves, and many researchers and scientists are continuing their efforts to anticipate and reduce the damage. In general, the short-term transformation of swell-like high waves can be reproduced relatively well in the third generation wave models, but the transformation of relatively long period waves needs to be simulated with higher accuracy in terms of the nonlinear wave interactions to gain a better understanding of the low-frequency wave generation and development mechanisms. In this study, we developed a calculation module to improve the calculation of the nonlinear energy transfer in the 3rd generation wave model and integrated it into the wave model to effectively consider the nonlinear wave interaction. First, the nonlinear energy transfer calculation module and third generation model were combined. Then, the combined model was used to reproduce the wave transformation due to the nonlinear interaction, and the performance of the developed operation module was verified.
It is difficult for seismic survey to get hold of characteristic of coal shale fractured zone and if coal shale zone did not come into contact with underground water, coal shale zone has characteristic of good strength. But in case coal shale zone is exposed by excavation or blasting to the air, strength of coal shale zone decreases in short term and weathering of coal shale zone progresses rapidly. Therefore, the prediction of tunnel collapse is not easy in the coal shale zone and the great portion of tunnel collapse takes place in a moment. From a view point of strength, after twelve hours form result of point load test strength of coal shale decreases by fifty six percent when coal shale zone come into contact with ground water. The standard reinforcement design of coal shale fractured zone was presented in the paper.
One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.
Journal of Korean Society for Atmospheric Environment
/
v.13
no.1
/
pp.79-89
/
1997
In order to reduce the outbreaks of short-term high concentrations and its impacts, we developed the models which predicted tomorrow's maximum hourly concentrations of $O_3$, TSP, SO$_2$, NO$_2$ and CO. Statistical methods like multi regressions were used because it must be operated easily under the present conditions. 47 independent variables were used, which included observed concentrations of air pollutants, observed and forcasted meteorological data in 1994 at Seoul and its surrounding areas. We subdivided Seoul into 4 areas coinciding with the present ozone warning areas. 4 kinds of seasonal models were developed due to the seasonal variations of observed concentrations, and 2 kinds of data models for the unavailable case of forecasted meteorological data. By comparing the $R^2$and root mean square error(hearafter 'RMSE') of each model, we confirmed that the models including forecasted data showed higher accuracy than ones using observed only. It was also shown that the higher the seasonal mean concentrations, the larger the RMSE. There was no distinct difference between the results of 4 areal models. In case of test run using 1995's data, the models predicted well the trends of daily variation of concentrations and the days when the possibility of outbreak of high concentarion was high. This study showed that it was reasonable to use those models as operational ones, because the $R^2$ and RMSE of models were smaller than those of operational/research models such as in South Coast Air Basin, CA, USA.
As the aging problem of the regional industry ecosystem has gradually become serious, research to measure and regenerate the regional industry ecosystem decline has been actively conducted. However, little research has been done on regional industry ecosystem crises. Crisis emerges radically over a short period of time, and it is often impossible to respond by post-response, so you must respond before the crisis occurs. In other words, it is more necessary and required when looking at the crisis early and taking a proactive response from a long-term perspective. Therefore, it is necessary to develop a predictive model that can proactively recognize and respond to the crisis in the regional industry ecosystem. Therefore, this study checked the possibility of predicting the risk of regional industry and market according to the emotional score of the news by using large-scale news data. News sentiment analysis was performed using the Google sentiment analysis API, and this was organized by month to check the correlation between actual events.
The purposes of this study are to classify heavy snowfall types in the Republic of Korea based on fresh snowfall data and atmospheric circulation data during the last 36(1973/74-2008/09) snow seasons and to identify typical surface synoptic climate patterns that characterize each heavy snowfall type. Four synoptic climate categories and seventeen regional heavy snowfall types are classified based on sea level pressure/surface wind vector patterns in East Asia and frequent spatial clustering patterns of heavy snowfall in the Republic of Korea, respectively. Composite analyses of multiple surface synoptic weather charts demonstrate that the locations and intensity of pressure/wind vector mean and anomaly cores in East Asia differentiate each regional heavy snowfall type in Korea. These differences in synoptic climatic fields are primarily associated with the surge of the Siberian high pressure system and the appearance of low pressure systems over the Korean Peninsula. In terms of hemispheric atmospheric circulation, synoptic climatic patterns in the negative mode of winter Arctic Oscillation (AO) are also associated with frequent heavy snowfall in the Republic of Korea at seasonal scales. These results from long-term synoptic climatic data could contribute to improvement of short-range or seasonal prediction of regional heavy snowfall.
In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).
Objective : To estimate the status of HIV infection and AIDS incidence using a back-calculation model in Korea. Methods : Back-calculation is a method for estimating the past infection rate using AIDS incidence data. The method has been useful for obtaining short-term projections of AIDS incidence and estimating previous HIV prevalence. If the density of the incubation periods is known, together with the AIDS incidence, we can estimate historical HIV infections and forecast AIDS incidence in any time period up to time t. In this paper, we estimated the number of HIV infections and AIDS incidence according to the distribution of various incubation periods Results : The cumulative numbers of HIV infection from 1991 to 1996 were $708{\sim}1,426$ in Weibull distribution and $918{\sim}1,980$ in Gamma distribution. The projected AIDS incidence in 1997 was $16{\sim}25$ in Weibull distribution and $13{\sim}26$ in Gamma distribution. Conclusions : The estimated cumulative HIV infections from 1991 to 1996 were $1.4{\sim}4.0$ times more than notified cumulative HIV infections. Additionally, the projected AIDS incidence in 1997 was less than the notified AIDS cases. The reason for this underestimation derives from the very low level of HIV prevalence in Korea, further research is required for the distribution of the incubation period of HIV infection in Korea, particularly for the effects of combination treatments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.