• 제목/요약/키워드: Short utterance variance normalization

검색결과 4건 처리시간 0.185초

강인한 음성인식을 위한 극점 필터링 및 스케일 정규화를 이용한 켑스트럼 특징 정규화 방식 (Cepstral Feature Normalization Methods Using Pole Filtering and Scale Normalization for Robust Speech Recognition)

  • 최보경;반성민;김형순
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.316-320
    • /
    • 2015
  • 본 논문에서는 Cepstral Mean Normalization(CMN)과 Cepstral Mean and Variance Normalization(CMVN) 프레임워크에서 극점 필터링(pole filtering) 개념을 Mel-Frequency Cepstral Coefficient(MFCC) 특징 벡터에 적용한다. 또한 분산 정규화를 대신하여 스케일 정규화를 사용하는 Cepstral Mean and Scale Normalization(CMSN)의 성능을 잡음 환경 음성인식 실험을 통해 평가한다. CMN과 CMVN은 보통 발화 단위로 수행되기 때문에 짧은 발화의 경우 특징에 대한 평균과 분산의 추정 신뢰도가 보장되지 않는 문제점을 가지는데, 극점 필터링과 스케일 정규화 방식을 적용함으로 이러한 문제점을 보완할 수 있다. Aurora 2 데이터베이스를 이용한 실험 결과, 극점 필터링과 스케일 정규화를 결합한 특징 정규화 방식의 성능이 가장 높은 성능 향상을 보인다.

잡음 환경에서 짧은 발화 인식 성능 향상을 위한 선택적 극점 필터링 기반의 특징 정규화 (Selective pole filtering based feature normalization for performance improvement of short utterance recognition in noisy environments)

  • 최보경;반성민;김형순
    • 말소리와 음성과학
    • /
    • 제9권2호
    • /
    • pp.103-110
    • /
    • 2017
  • The pole filtering concept has been successfully applied to cepstral feature normalization techniques for noise-robust speech recognition. In this paper, it is proposed to apply the pole filtering selectively only to the speech intervals, in order to further improve the recognition performance for short utterances in noisy environments. Experimental results on AURORA 2 task with clean-condition training show that the proposed selectively pole-filtered cepstral mean normalization (SPFCMN) and selectively pole-filtered cepstral mean and variance normalization (SPFCMVN) yield error rate reduction of 38.6% and 45.8%, respectively, compared to the baseline system.

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용 (Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network)

  • 한재민;김민식;김형순
    • 한국음향학회지
    • /
    • 제39권1호
    • /
    • pp.64-68
    • /
    • 2020
  • 가우스 혼합 모델-은닉 마코프 모델(Gaussian Mixture Model-Hidden Markov Model, GMM-HMM)을 이용하는 전통적인 음성인식 시스템에서는, 극점 필터링 기반의 켑스트럼 특징 정규화 방식이 잡음 환경에서 짧은 발화의 인식 성능을 향상시키는데 효과적이었다. 본 논문에서는 심층신경망(Deep Neural Network, DNN)을 이용하는 최신의 음성인식 시스템에서도 이 방식의 유용성이 있는지 검토한다. AURORA 2 DB에 대한 실험 결과, 특히 훈련 및 테스트 환경 사이의 불일치가 클 때에, 극점 필터링 기반의 켑스트럼 평균 분산 정규화 방식이 극점 필터링을 사용하지 않는 방식에 비해 매우 짧은 발화의 인식 성능을 개선시킴을 보여 준다.