• 제목/요약/키워드: Short test utterance

검색결과 7건 처리시간 0.02초

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증 (Short utterance speaker verification using PLDA model adaptation and data augmentation)

  • 윤성욱;권오욱
    • 말소리와 음성과학
    • /
    • 제9권2호
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

화자 확인에서 SPRT를 위한 새로운 테스트 데이터 생성 (A New Teat Data Generation for SPRT in Speaker Verification)

  • 서창우;이기용
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.42-47
    • /
    • 2003
  • 본 논문에서 제안하는 방법은 화자 확인 (speaker verification)에서 시퀀스 확률비 테스트 (SPRT: sequential probability ratio test)를 위한 시작 프레임의 샘플 시프트를 이용해서 새로운 테스트 데이터를 생성하는 방법이다. SPRT는 테스트 계산량을 줄일 수 있는 효과적인 알고리즘이다. 그러나 테스트의 결정과정에서 SPRT 방법은 입력신호가 확률밀도 함수로부터 독립적이고 균일하게 분포되어 있다는 가정하에 수행할 수 있으며, 또한 발성길이가 짧은 데이터에는 적용하기에 적절하지 못하다. 제안한 방법은 시작 프레임의 샘플 시프트를 통한 새로운 테스트 데이터를 생성하는 방법이기 때문에 테스트 데이터의 길이에 상관없이 SPRT를 수행할 수 있다. 또한 SPRT 방법에서 고려해야 하는 데이터의 상관성은 주성분 분석(principal component analysis)을 이용함으로써 효과적으로 제거하였다. 실험 결과 제안한 방법은 기존의 방법보다 샘플시프트를 위한 데이터의 계산량은 약간 증가하였지만, 등가오류율 (EER: equal error rate)에서 평균0.7%이상 좋은 성능결과를 보였다.

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System

  • 장한;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.37-39
    • /
    • 2009
  • In the research of speech recognition, locating the beginning and end of a speech utterance in a background of noise is of great importance. Since the background noise presenting to record will introduce disturbance while we just want to get the stationary parameters to represent the corresponding speech section, in particular, a major source of error in automatic recognition system of isolated words is the inaccurate detection of beginning and ending boundaries of test and reference templates, thus we must find potent method to remove the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two simple time-domain measurements - short-time energy, and short-time zero-crossing rate, which couldn't guarantee the precise results if in the low signal-to-noise ratio environments. This paper proposes a novel approach that finds the Lyapunov exponent of time-domain waveform. This proposed method has no use for obtaining the frequency-domain parameters for endpoint detection process, e.g. Mel-Scale Features, which have been introduced in other paper. Comparing with the conventional methods based on short-time energy and short-time zero-crossing rate, the novel approach based on time-domain Lyapunov Exponents(LEs) is low complexity and suitable for Digital Isolated Word Recognition System.

  • PDF

심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용 (Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network)

  • 한재민;김민식;김형순
    • 한국음향학회지
    • /
    • 제39권1호
    • /
    • pp.64-68
    • /
    • 2020
  • 가우스 혼합 모델-은닉 마코프 모델(Gaussian Mixture Model-Hidden Markov Model, GMM-HMM)을 이용하는 전통적인 음성인식 시스템에서는, 극점 필터링 기반의 켑스트럼 특징 정규화 방식이 잡음 환경에서 짧은 발화의 인식 성능을 향상시키는데 효과적이었다. 본 논문에서는 심층신경망(Deep Neural Network, DNN)을 이용하는 최신의 음성인식 시스템에서도 이 방식의 유용성이 있는지 검토한다. AURORA 2 DB에 대한 실험 결과, 특히 훈련 및 테스트 환경 사이의 불일치가 클 때에, 극점 필터링 기반의 켑스트럼 평균 분산 정규화 방식이 극점 필터링을 사용하지 않는 방식에 비해 매우 짧은 발화의 인식 성능을 개선시킴을 보여 준다.

견고한 대화시스템을 위한 한국어 대화체의 음운론적, 구문론적 오류 분석 및 복구 (An analysis and correction of the phonological and syntactic errors in korean dialogues for a robust dialogue system)

  • 김영길;김한우;최병욱
    • 전자공학회논문지C
    • /
    • 제34C권5호
    • /
    • pp.55-65
    • /
    • 1997
  • In many cases, a dialogue system can't extract the correct analysis information of a user's spoken utterance, because of its own ungrammatical components. Therefore, in order to perform a correct before it performs the syntactic processing. In this paper, we use a real dialogue corpus and classify these ungrammatical errors as 4 categories : phonological, syntactic, semantic errors that consist of speech reparis and inversions, and propose an algorithm to detect and correct the errors. In short, this paper proposes a method to detect and correct the speech repairs and inversions that are classified as the phonological and syntactic errors to implement a robust dialogue system. And, through the test of real dialogue data, this paper shows an efficiency of the proposed algorithm.

  • PDF

음성인식을 위한 혼돈시스템 특성기반의 종단탐색 기법 (A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System)

  • 장한;정길도
    • 전자공학회논문지SC
    • /
    • 제46권5호
    • /
    • pp.8-14
    • /
    • 2009
  • 음성 인식 연구에서 잡음이 있는 상태에서 음성 발음상의 시작점과 종단점을 찾는 것은 매우 중요하다. 기존 음성인식 시스템의 오차는 대부분 참고템플릿의 시작점과 종단점을 왜란이나 잡음으로 인해 자동적으로 찾지 못했을 경우 발생한다. 따라서 음성 신호상에서 필요 없는 부분을 제거할 수 있는 방법이 필요하다. 기존의 음성 종단점을 찾는 방법으로는 시간도메인 측정방법, 미세시간 에너지 분석, 영교차율 방법이 있다. 위의 방법들은 저주파 신호 노이즈의 영향에 정밀성을 보장을 못한다. 따라서 본 논문에서는 시간영역상에서 리야프노프 지수를 이용한 종단점 인식 알고리즘을 제안하였다. 기존의 방법들과의 비교를 통해 제안한 방법의 성능 우수성을 보였으며, 시뮬레이션 및 실험을 통해 잡음환경에서도 음성종단 인식이 가능함을 보였다.