• Title/Summary/Keyword: Short lap splices

Search Result 7, Processing Time 0.019 seconds

Cyclic Behavior of the HPFRCC Column With Short Lap Splices Under Unidirectional Loading (일방향 반복가력을 받는 HPFRCC로 보강한 비내진 기둥의 이력거동)

  • Kang, Ho Jae;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.247-253
    • /
    • 2022
  • The columns of older reinforced concrete (RC) buildings generally have limited reinforcement details. Thus, they could be vulnerable to earthquake ground motions, leading to partial or complete building collapse. In this study, high-performance fiber-reinforced cementitious composite (HPFRCC) was applied to RC columns to improve their seismic behavior. Experimental tests were conducted with two full-sized specimens with limited reinforcement details, including short lap splices, while unidirectional loadings were applied to the specimens. The seismic behavior of RC columns was substantially improved by using HPFRCC.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Seismic behaviour of RC columns with welded rebars or mechanical splices of reinforcement

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.297-306
    • /
    • 2019
  • The extension of existing RC buildings is a challenging process, which requires efficient connection between existing and new materials to guarantee load transferring between the lap-spliced longitudinal columns' reinforcement. Therefore, the length of the columns' starter bars is a crucial factor, which decisively affects the seismic response of the new columns. In particular, when the length of the starter bars is short, then the length of the lap splices of reinforcement is inadequate to ensure load transfer between steel bars and concrete, with an indisputable detrimental impact on the seismic behaviour of the columns. Moreover, in most of the existing RC buildings the column starter bars are of particularly short length, while they have probably been bent, cut or corroded. In the present study, the effectiveness of both welded rebar and mechanical splices of reinforcement in ensuring load transferring between the starter bars and the longitudinal reinforcement of the new column was experimentally evaluated. Four cantilever column subassemblages were constructed and subjected to earthquake-type loading. Three of the specimens were used to examine different types of shielded metal arc welding (SMAW), while in the fourth subassemblage mechanical splices were tested. The hysteretic response of the columns was evaluated and compared to the behaviour of a fifth specimen with continuous reinforcement, tested by Kalogeropoulos and Tsonos (2019). Test results clearly demonstrated that the examined types of SMAW were equally satisfactory in ensuring the ductile seismic performance of the columns, while the mechanical splices found to be more susceptible to exhibit slipping of the bars.

Calculation of Rebar Stress at Splice Failure of RC Columns (RC 기둥의 겹침이음파괴 시 철근의 응력 산정)

  • Cho, Jae-Yeol;Pincheira, Jose A.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.446-449
    • /
    • 2006
  • Several experimental investigations have been carried out to study the behavior of reinforced concrete columns with short lap splices. However, very few analytical models have been developed for the analysis of such columns subjected to earthquakes. As nonlinear analysis procedures become more common in practice (such as those outlined in the Guidelines for Seismic Rehabilitation of Buildings published by the Federal Emergency Management Agency in the United States), the need for an accurate and reliable representation of the nonlinear response of strength degrading systems becomes more important. In this study, an analytical model for estimating the complete response of reinforced concrete columns with short lap splices is presented. The model is based on local bond stress-slip relationships and is validated against independent experimental data from cyclic loading tests on reinforced concrete columns with typical construction details of the 1960s. In this paper a simple equation for calculating the bar stress at splice failure is presented. Use of the proposed equation resulted in excellent agreement between the measured and calculated strength at splice failure.

  • PDF

Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.291-302
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. New criteria for the compression lap splice including the effects of concrete strength are required for practical purpose of ultra-high strength concrete. Characteristics of compression lap splice have been extensively investigated and main parameters are derived. In addition, an experimental study has been conducted with column specimens in concrete strength of 40 and 60 MPa. The strength of the compression lap splice consists of bond and end bearing and two contributors are combined. Therefore, combined action of bond and end bearing should be assessed. Compared with tension splices, concrete strength significantly affects the strength of compression splices due to short splice length and existence of end bearing. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. The stress states of concrete surrounding spliced bars govern the strengths of bond and end bearing. Because the axial stress of the concrete is relatively high, the splice strength is not dependent on clear spacing. End bearing strength is not affected by splice length and clear spacing and is expressed with a function of the square root of concrete strength. The failure mode of specimens is similar to side-face blowout of pullout test of anchors and the strength of end bearing can be evaluated using the equation of side-face blowout strength. Because the stresses developed by bond in compression splices are nearly identical to those in tension splices, strength increment of compression splices is attributed to end bearing only.

Bidirectional Lateral Loading of RC Columns with Short Lap Splices (겹침이음 길이가 짧은 RC 기둥의 이방향 횡하중 가력 실험)

  • Lee, Chang Seok;Park, Yi Seul;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Reinforced concrete (RC) buildings built in the 1980s are vulnerable to seismic behavior because they were designed without any consideration of seismic loads. These buildings have widely spaced transverse reinforcements and a short lap splice length of longitudinal reinforcements, which makes them vulnerable to severe damage or even collapse during earthquakes. The purpose of this study is to investigate the impact of bidirectional lateral loads on RC columns with deficient reinforcement details. An experimental test was conducted for two full-scale RC column specimens. The test results of deficient RC columns revealed that bidirectional loading deteriorates the seismic capacity when compared with a column tested unidirectionally. Modeling parameters were extracted from the tested load-displacement response and compared with those proposed in performance-based design standards. The modeling parameters proposed in the standards underestimated the deformation capacity of tested specimens by nearly 50% and overestimated the strength capacity by 15 to 20%.

Damages of minarets during Erciş and Edremit Earthquakes, 2011 in Turkey

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Muvafik, Murat
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.479-499
    • /
    • 2014
  • This paper illustrates the damages of reinforced concrete and masonry minarets during October 23 (Erciş) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Erciş and Edremit are townships located 90km and 18km from Van city center in Turkey, respectively. Ground accelerations and response spectrums for these earthquakes are given in this paper. A total of 63 reinforced concrete and masonry minarets are heavily damaged or collapsed in the city center and villages nearby after both earthquakes. Because of the fact that there is no Turkish standard and specification directly related to design of minarets, nearly all of the constructions are carried out by workers using only their own technical knowledge. So, all of the non-engineering reinforced concrete and masonry minarets completely collapsed or damaged heavily. From the study, it is seen that the damages are due to several reasons such as site effect, location, and length of the fault, reduction in cross section and formation of the discontinuity, use of plain reinforcement steel, use of concrete with insufficient strength, existence of short lap splices and incorrect end hook angle, larger mass and stiffness concentrations on some region, longitudinal reinforcements discontinuity, cracks at the cylindrical body, and damage of spire and end ornament. In addition to these reasons, the two earthquakes hit the minarets within seventeen days, causing progressive damage. So, the existing design and construction practices should be improved to provide sufficient earthquake performance. Also, it is recommended that there should be a safe distance between the minaret and surrounding structures to reduce the loose of life after earthquake.