• Title/Summary/Keyword: Short distance

Search Result 1,239, Processing Time 0.032 seconds

Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl (강체 선회유동 조건에서의 분무 분산 특성에 관한 연구)

  • 이충훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

Evaluation of Fuel Consumption of B747-400 in Short-range Flight with Catapult Assist

  • Lee, Changhyeok;Park, Hyunchul
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.40-46
    • /
    • 2020
  • Recently, the aviation industry has sought to reduce its carbon usage in aircraft operations. Specifically, the industry is proceeding with the development of ultra-large turbofan engines and the development of hybrid electric engines to reduce the fuel consumption of aircraft. In one case, Airbus is developing as its future goal an aircraft with a short take-off distance that uses a catapult. In this study, when a b747-400 aircraft with two of the four engines removed was tested using a catapult, its fuel consumption was compared with that of the original aircraft. Fuel consumption was calculated using the mass flow consumption formula. Further, the aircraft L/D ratio caused by engine removal was interpreted using the CFD Tool, Ansys Fluent. The results showed that the lift ratio was improved by about 7% and that the fuel efficiency was improved by about 14%.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

Time-Frequency Analysis of the Doppler Signals by Moving Targets (이동 표적에 의한 도플러 신호의 시간-주파수 분석)

  • Son, Joong-Tak;Lee, Seung-Houn;Park, Kil-Houm
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.38-48
    • /
    • 2005
  • Instantaneous frequency of doppler signals is used to get the information of the relative velocity and the miss distance between a missile and a corresponding target. In this paper, we have performed time-frequency analysis and instantaneous frequency estimation with Short Time Fourier Transform(STFT), Wigner Ville Distribution(WVD) and Continuous Wavelet Transform(CWT) about the doppler signals generated by moving targets. Performance evaluation was performed using simulated doppler signals generated by a single moving target and two moving targets. From the results of the time-frequency analysis, we found that WVD method was the most efficient instantaneous frequency estimator among the three methods. But in case of two moving targets, WVD method got cross talks and CWT method got oscillation when two doppler frequencies were close to each other.

Design and Thrust Force Measurement of LSM for High-Speed Maglev Train (초고속 자기부상열차용 LSM 설계 및 추력 측정 시험)

  • Oh, Se-Young;Lee, Chang-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1473-1478
    • /
    • 2014
  • This paper deals with design and thrust force measurement of EMS type LSM for propulsion of the high-speed maglev train. The load of maglev train is calculated, and the design equations of the LSM are presented, and the LSM which is suitable for the operation of short-distance test track is designed. In addition, the finite element analysis is performed to confirm the back-EMF and thrust force characteristics of the LSM designed model. A short length LSM prototype model is manufactured. Finally, the thrust force of the LSM is measured by the method applying dc current to the stator winding instead of three-phase ac current. And the validity of the design and analysis is verified by this measurement.

Study on the Relationship between Udder and Teat Characteristics and Somatic Cell Count (유방과 유두의 형태와 체세포수에 대한 연구)

  • Lee, Jeong-Chi;Lee, Chai-Yong
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.172-176
    • /
    • 2007
  • The objective of this study was to determine the relationship between udder and teat characteristics and somatic cell count (SCC). A total of 749 (73.1%) milk samples from 1,024 quarters of 259 Holstein cows contained less than 200,000 somatic cells/ml, while 132 (12.9%) quarters contained more than 500,000 somatic cells/ml. Prior to data analysis, somatic cell counts were transformed to natural logarithm. The mean SCS {$log_e(SCS/10^3)$} of milk samples from the front quarters was lower than milk samples from the rear quarters. The highest SCS was observed from cows with the step-shaped udder and the pear-shaped teats, respectively. Increased SCS was observed from cows with large teat diameter, short teat length, short distance between the teat tip to floor (p<0.05) and with increase in parity, respectively.

Short Range Rear Obstacle Detector for Automobile Using 24GHz AM Radar Sensor

  • Kim, Young Su;Choi, Yun Ho;Han, Soo Deog;Bien, Franklin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.281-286
    • /
    • 2011
  • FMCW Radar sensor is commonly used for an automobile collision avoidance system for rider's safe. Systems using FMCW radar, however, would be one of expensive solutions for just simple rear obstacle detection purpose due to its high cost. In this letter, a short range rear obstacle detector using novel 24GHz AM radar sensor is presented. It can be implemented at significantly lower cost than FMCW radar for practical commercialization. The proposed AM radar sensor module is fabricated in a single aluminum housing to reduce the overall size while using single power supply voltage of 12V with 1200mA current for automotive applications. The measured detection range is up to 210cm with 10cm of distance resolution, which is suitable for a parking assistance system for automobiles.

Analysis of Meteorological Service Requirements for Safe Operation of Low-altitude Aircraft

  • Cho, YoungJin;Hong, SeokMin;Ku, Sungkwan
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.87-96
    • /
    • 2018
  • Meteorological information is essential for the safe operation of aircraft. Many organizations both at home and abroad provide meteorological services for small aircraft flying at a low altitude as a part of open public service and have performed relevant studies. Recently, such a service has been expanded to an online platform in order to deliver information more efficiently. The ultimate goal of this study is to improve the meteorological service for small low-altitude aircraft that mostly travel a short distance for a short time. To achieve this goal, this study considered requirements for developing an effective information delivery system and conducted a survey of user requirements to derive the necessary information that could be used to develop a real service.

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.