• Title/Summary/Keyword: Short circuit fault

Search Result 333, Processing Time 0.026 seconds

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

Development of Arc-horn to be mounted on 154kV Transmission Line Arrester (154kV 송전선로 피뢰기 설치용 아킹혼 개발)

  • Min, Byeong-Wook;Kim, Woo-Kyum;Lee, Buk-Chang;Choi, Han-Yeol;Park, Jae-Ung;Keum, Eui-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.335-336
    • /
    • 2008
  • Overhead transmission lines are mainly crossing mountainous area. They are easily affected in weathers like typhoon, strong wind, lightning, heavy rain, or heavy snow. Sometimes these weathers cause transmission line faults. A lightning flashover is most often fault. Nowadays lightning density in KOREA is growing high and lightning flashovers occur more often. A lightning flashover on transmission line is mostly cleared by momentary operation of a circuit breaker, so power failure happens rarely. However, when both circuits trip simultaneously due to the lightning flashovers on double circuit transmission line, short time power failure and voltage drop happen. KEPCO has used transmission line arresters to avoid double circuit simultaneous trip out since 2003. And transmission line arresters cannot be installed with KEPCO's present metal fittings, so various fittings have been used for each transmission line arrester manufacturer. This paper introduces development and standardization of arc-horn and metal fittings for transmission line arrester which can be used for both existing lines and new lines in KEPCO.

  • PDF

A Study of Quench Behaviors in YBCO Flims for Superconducting Fault Current Limiter (기포발생에 따른 초전도 한류기용 YBCO 박막 퀜치특성 연구)

  • Kang, J.S.;Park, K.B.;Lee, B.W.;Oh, I.S.;Kim, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.796-798
    • /
    • 2002
  • In these days, the interruption capability of some circuit breakers, which are installed in the transmission systems, is getting lower than the magnitude of the fault current because of continuous increase of power demand and relatively short power line which was installed in forms of mesh network As a result of these situations, fault current limiters (FCLs) are strongly necessary. There are various types which is investigated around the world, and new power apparatuses that have been newly considered and developed by many manufactures. In this paper, we considered resistive superconducting fault current limiters with YBCO thin films. The resistive limiters utilize a transition of YBCO films from superconducting to normal state caused by exceeding the critical current. By means of newly occurred impedance, the fault current will be limited effectively. Generally, a few current path patterns are available for YBCO films to enhance the current limiting performance of YBCO films. In this paper. the meander-type and the bi-spiral-type were used for current paths of YBCO flims. When YBCO films are quenched into the normal state, bubbles could be observed on the surface of YBCO films. Using our high-speed camera, the number of bubbles and the size of bubbles could be visualized and the relation between bubbles and current density was analyzed. By means of moving pictures of bubbles, we observed how the quench extended or how the heat was conducted in films.

  • PDF

A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank (저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.562-567
    • /
    • 2020
  • In this paper, this is a study on the correction of protection relays to monitor temporary power facilities for storage tanks especially transformers to block and protect faults such as insulation breakdown. When an abnormality such as a short circuit or a ground fault occurs in the power system, it is important to detect this quickly cut off the device and equipment in which the fault occurred and separate it from the power system to correct the protection relay so that it does not interfere with power supply. In addition the fault current calculation that accurately applies the fault type and the cause of the fault for protection cooperation will be the most important factor in the correction of the protection relay. For protection coordination a study was conducted on the method of coordination for protection of power facility protection for storage tanks such as over current relay, ground over current relay, under voltage relay, and ground over voltage relay applied to temporary.

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.

Transient Stability of Industrial Plant on Voltage Disturbance in the Utility System (전력계통 전압외란에 대한 자가수용가의 과도 안정도 해석)

  • 조양행;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic analysis of stability in industrial power system is an important subject. In this paper, the effect of voltage dips for short duration (short-circuit) in the utility system on generators, synchronous motors of the industrial plant and the measures to be adopted to reduce the undesired effects of voltage dips re investigated. In the case of utility three-phase short-circuits of longer duration, both the generators and synchronous motors in the plant may become unstable. In order to avoid instability through fault clearing in the second zone time a decoupling device is necessary. The instability of voltage can be avoided with a well suited setting time of disconnecting device and load trip.

  • PDF

Characterization Method for Testing Circuit Patterns on MCM/PCB Modules with Electron Beams of a Scanning Electron Microscope (MCM/PCB 회로패턴 검사에서 SEM의 전자빔을 이용한 측정방법)

  • Kim, Joon-Il;Shin, Joon-Kyun;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a characterization method for faults of circuit patterns on MCM(Multichip Module) or PCB(Printed Circuit Board) substrates with electron beams of a SEM(Scanning Electron Microscope) by inducing voltage contrast on the signal line. The experimentation employes dual potential electron beams for the fault characterization of circuit patterns with a commercial SEM without modifying its structure. The testing procedure utilizes only one electron gun for the generation of dual potential electron beams by two different accelerating voltages, one for charging electron beam which introduces the yield of secondary electron $\delta$ < 1 and the other for reading beam which introduces $\delta$ > 1. Reading beam can read open's/short's of a specific net among many test nets, simultaneously discharging during the reading process for the next step, by removing its voltage contrast. The experimental results of testing the copper signal lines on glass-epoxy substrates showed that the state of open's/short's had generated the brightness contrast due to the voltage contrast on the surface of copper conductor line, when the net had charged with charging electron beams of 7KV accelerating voltages and then read with scanning reading electron beams of 2KV accelerating voltages in 10 seconds. The experimental results with Au pads of a IC die and Au plated Cu pads of BGA substrates provided the simple test method of circuit lines with 7KV charging electron beam and 2KV reading beam. Thus the characterization method showed that we can test open and short circuits of the net nondestructively by using dual potential electron beams with one SEM gun.

  • PDF

Transient Stability Analysis of Wind Turbine Generator Connected to a Weak Grid (약한 계통에 연계된 풍력발전기의 과도안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4494-4499
    • /
    • 2014
  • The margin of transient stability of a weak grid system is very low because of the small short-circuit ratio and large impedance. If the fault of the weak grid is cleared by the protection system, one of the major lines is disconnected after the fault is cleared. This further reduces the system strength. Therefore, it is necessary that a new generation system be added to the weak grid to enhance the transient stability margin. A conventional synchronous generator and wind turbine generator were added to a base grid system. The results of transient stability analysis with additional generators using PSSE were compared. The simulations showed that wind turbine generators provide good damping performance and enhance the transient stability margin based on CCT up to 5 times.

Development of a Voltage Sag Assessment Program Considering Generator Scheduling and Voltage Tolerance (발전기 스케줄링과 부하 전압민감도를 고려한 순간전압강하 평가 프로그램 개발)

  • Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.92-100
    • /
    • 2009
  • This paper presents a voltage sag assessment program. The program provides various functions for stochastic assessment of voltage sags such as short-circuit analysis, the determination of the area of vulnerability and the calculation of expected sag frequency(ESF). Effective data visualization functions based on computer graphics and animation were also implemented in the developed program. In this paper, the concept of voltage sag assessment and the assessment method considering generator scheduling and time-varying fault rates are presented. The influence of generator scheduling and time-varying fault rates on voltage sag prediction is also described by performing case studies using the developed program.

Analysis of operation performance of PHILS-based superconducting current limiter connected to MVDC system

  • Seok-Ju Lee;Jae In Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • In this paper, we analyze experimental results by applying the PHILS model to a lab-scale superconducting current limiter system for its actual application in medium-voltage direct current (MVDC) systems. Superconducting current limiters exhibit effective current-limiting performance in circuit breaker operations, particularly in limiting large fault currents within a short period, addressing the challenges posed by the increasing use of renewable energy and the integration of DC medium-voltage distribution systems. The development of such superconducting current limiters faces various technical and cost disadvantages, especially when applying a medium-voltage 35kV level system, which is intended for future introduction. The proven lab-scale superconducting current limiter system and the PHILS model are combined and integrated into the actual system. Our plan involves analyzing the limiter's performance, assessing its impact on the system, and preparing for its application in future medium-voltage systems. Utilizing RTDS, a simulation was conducted by connecting actual scaled-down equipment and systems, with the analysis results presented.