• Title/Summary/Keyword: Short Crack

Search Result 215, Processing Time 0.023 seconds

Short Crack Analysis by Fatigue Crack Opening Behavior (피로균열개구거동을 이용한 짧은균열의 거동 분석)

  • Song, Sam-Hong;Lee, Kyeong-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part I : Details of crack Closure Behavior) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동 (Part I: 균열닫힘 거동 상세))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.79-84
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are Investigated by performing narrow- and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks.

  • PDF

Prediction d Fatigue Growth Behavior of Short Cracks (짧은 균열의 피로성장거동예측)

  • 최용식;우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.47-53
    • /
    • 1993
  • The growth of short cracks can be well described in terms of the effective stress intensity factor range, which is calculated on the base of crack closure. The relation between the crack opening SIF and crack length is determined from the experimental results. The crack opening SIF of short cracks, Kop, can be predicted from the crack opening SIF at threshold of long crack, Kop.L. The growth rate of short cracks at notch root can be predicted from the crack opening SIF of short cracks, Kop, and the growth equation of long cracks in region II.

  • PDF

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

A Study of Small Fatigue Crack Measurement and Crack Growth Characteristics (미소균열측정과 성장특성에 관한 연구)

  • Lee, Jong-Hyung;So, Yoon-Sub;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Sang-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adapted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack when maximum crack depth is larger than the notch curvature radius.

  • PDF

Analysis on Short Crack Growth Rate after Single Overload under Cyclic Bending Moment

  • Song, Sam-Hong;Lee, Kyeong-Ro;Kim, Amkee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • In order to investigate the effect of single tensile overload on the short crack growth behavior under the out-of-plane cyclic bending moment, crack opening stresses were continuously measured by an elastic compliance method using strain gages. The characteristics of short crack growth after the single tensile overload are analyzed by the effective stress range ratio. Futhermore, the investigation was carried out with respect to various fatigue crack growth behaviors such as the plastic zone size effect on crack retardation, the retarded crack length and the number of cycles.

  • PDF

Crack identification in short shafts using wavelet-based element and neural networks

  • Xiang, Jiawei;Chen, Xuefeng;Yang, Lianfa
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.543-560
    • /
    • 2009
  • The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Quantitative Study on Threshold Condition of Critical Non-propagating Crack (임계정류피로크랙의 하한계 전파조건의 정량적 고찰)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF