• Title/Summary/Keyword: Shop floor Information

Search Result 68, Processing Time 0.024 seconds

Large Step Optimization Approach to Flexible Job Shop Scheduling with Multi-level Product Structures (다단계 제품 구조를 고려한 유연 잡샵 일정계획의 Large Step Optimization 적용 연구)

  • Jang, Yang-Ja;Kim, Kidong;Park, Jinwoo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.429-434
    • /
    • 2002
  • For companies assembling end products from sub assemblies or components, MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. In order to revise the fixed relative level which solutions are confined to, we apply large step transition in the first step and GA in the second step. We compare the genetic algorithm and 2-phase optimization with several dispatching rules in terms of tardiness for about forty modified standard job-shop problem instances.

  • PDF

A Study on Application of Systems Engineering Approach to Design of Smart Manufacturing Execution System (스마트 제조 실행 시스템 기본설계를 위한 시스템 엔지니어링 적용 방법에 대한 연구)

  • Jeon, Byeong-woo;Shin, Kee-Young;Hong, Dae-Geun;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.95-105
    • /
    • 2015
  • Manufacturing Execution System(MES) is in charge of manufacturing execution in the shop floor based on the inputs given by high level information such as ERP, etc. The typical MES implemented is not tightly interconnected with shop floor control system including real (or near real) time monitoring and control devices such as PLC. The lack of real-time interfaces is one of the major obstacles to achieve accurate and optimization of the total performance index of the shop floor system. Smart factory system in the paradigm of Industry 4.0 tries to solve the problems via CPS (Cyber Physical System) technology and FILS (Factory In-the-Loop System). In this paper, we conducted Systems Engineering Approach to design an advanced MES (namely Smart MES) that can accommodate CPS and FILS concept. Specifically, we tailored Systems Engineering Process (SEP) based on an International Standard formalized as ISO/IEC 15288 to develop Stakeholders' Requirements (StR), System Requirements (SyR). The deliverables of each process are modeled and represented by the SysML, UML customized to Systems Engineering. The results of the research can provide a conceptual framework for future MES that can play a crucial role in the Smart Factory.

Verification of ERP Standard Time Using TOC Technique and Improvement of MES Routing Point (TOC 기법을 적용한 ERP 표준시간 검증 및 MES 공정실적개선)

  • Kim, Sung-Min;Ahn, Jaekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.22-33
    • /
    • 2018
  • Recently domestic manufacturing companies have been experiencing worsening profitability and stunted growth due to the long-term economic recession and the rapid rise of developing countries such as China and Southeast Asia. These difficulties force many companies to concentrate their core competencies on new value creation and innovation in order to gain momentum for new growth. Enterprise Resource Planning (ERP) has been considered as one of viable solutions. Among the various modules in ERP, shop floor control function in the production management module is rather limited. In order to overcome this problem, Manufacturing Execution System (MES) has been used as a subsystem which has a strong information gathering power and flexibility. Both systems interact closely with each other. In particular, ERP requires fast, accurate shop floor information at MES. This paper describes how to synchronize relevant information between ERP and MES with theory of constraints (TOC). The processing time information transmitted from the MES workplace is received at the ERP workplace. In the process, the received processing time is causing information distortion in ERP, when the information gathering standard of MES is different from the ERP information interpretation standard. The Drum-Buffer-Rope theory of TOC was applied to resolve this problem, therefore, information synchronization between both systems was made. As a precondition, the standard time of the upper ERP system was rearranged according to the capacity constraints resource. As a result, standard time restructuring has affected changes in labor costs. Standard labor costs have come close to actual ones, and information synchronization of MES transmission data has improved the reliability of standard product costs, such that it enabled various company-wide restructuring actions to be much more effective.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Dynamic Order Release Policy Considering The Due Date of Order for Automated Manufacturing Systems (자동생산시스템에서 납기를 고려한 동적주문투입정책)

  • 노인규;박찬웅
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 1996
  • This paper presents an order releasing algorithm for an AMS. Order release policy determine order releasing time to shop floor so as to improve order management and shop performance. The proposed order releasing algorithm can cope with the dynamic environment of orders(e.g. change or cancel of order) flexibly and fastly, by processing individual order and exchanging the information(e.g. compeletion time or lateness of order, etc) with customer. And the objective of the order releasing algorithm is the observance of the due-date, therefore, it can provide customer with a reliability of order. Computer simulation is used to obtain the makespan of order which is the input data of the order releasing algorithm. The eight candidate part dispatching rules are simulated to selected an effective part dispatching rule for the computer simulation. By using the best effective part dispatching rule, the computer simulation is conducted to determine order releasing time.

  • PDF

Development of the Model for Effective Operation of Work Order and Report of Work Performance (작업지시 및 작업실적 보고의 효율적 운영을 위한 모델 개발)

  • 공명달;김정자
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.147-158
    • /
    • 1998
  • Work order and report of work performance are essential activities of work management in the shop floor. This study suggests the model for the communication methods and Information exchange systems which can enhance faultless accuracy about these informations in the client/server architecture.

  • PDF

Machining time estimation of sculptured surfaces using NC block distributions (NC 블록 분포를 이용한 자유곡면의 가공시간 예측)

  • Heo, Eun-Young;Park, Seon-Young;Kim, Bo-Hyun;Kim, Dong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • The estimation of NC machining time is of significance since it provides shop floor engineers with information for the determination of the productivity of the floor as well as process schedules. The NC machining time commonly depends on NC programs since they have various important information such as tool positions, feed rates, and other miscellaneous functions. Thus, nominal NC machining time can be easily acquired based on the programs. Actual machining time, however, cannot be simply obtained because of the dynamic characteristics of a NC machine controller such as acceleration and deceleration. Hence, this study presents a NC machine time estimation model for sculptured surfaces, considering the dynamic characteristics. The estimation model uses the distribution of NC blocks according to a factor influencing the machining time. Finally, machining time is estimated by a statistical machining time estimation model representing the relationship between the block distribution and the machining time. The parameters in the model are searched out by a genetic algorithm.

  • PDF

A Study of MES for the Product Tracking Based on RFID (제품추적을 위한 RFID기반 제조실행시스템에 대한 연구)

  • Kim, Bong-Seok;Lee, Hong-Chul
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.159-164
    • /
    • 2006
  • MES(Manufacturing Execution System) is a control system which supports basic activities(scheduling, working process and qualify management, etc) to execute working on the shop floor. As especially MES is a system to decrease the gap between production planning and operating, it executes functions that make decision between management and labor using real-time data. MES for real-time information processing requires certain conditions such as data modeling of RFID, which has recently attracted attentions, and monitoring of each product unit from manufacture to sales. However, in the middle of processing the unit with a RFID tag, transponders(readers) can't often read the tag due to reader's malfunctions, intentional damages, loss and the circumstantial effects; for that reason, users are unable to confirm the location of the product unit. In this case, users cannot avoid tracing the path of units with uncertain clues. In this paper, we suggest that the unique MES based on RFID and Bayesian Network can immediately track the product unit, and show how to evaluate it.

  • PDF

Development of the DNC System for SFC/POP (SFC/POP 연계형 DNC 시스템 구현)

  • Choi, Jung-Hee;Kim, Jae-Gyun;Lee, Dong-Hyun;Choi, In-Jib
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.374-381
    • /
    • 1999
  • In this paper, we propose an architecture of the DNC system for Shop Floor Control/Point of Production(SFC/POP). The DNC system to be presented this paper retrieves line-up sheets which include the drawing information, making a index database for line-up sheets, NC programs and tool adjustment data. And it is interface with a raw material, jig and tool information. Also, the DNC system transmits operation information to real workers rapidly, and supports realtime monitoring by collecting the state information of machines directly. In the analysis and design phases, this paper models realtime events using the state transition diagrams. In the implementation phase, we use the ORACLE DBMS(Database Management System) as the DBMS and Developer 2000 and Microsoft Visual C++ 5.0 as the programming tools.

  • PDF

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.